精英家教网 > 高中数学 > 题目详情
8.已知双曲线${C_1}:\frac{x^2}{4}-{y^2}=1$,双曲线${C_2}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若${S_{△OM{F_2}}}=16$,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是(  )
A.32B.16C.8D.4

分析 求得双曲线C1的离心率,求得双曲线C2一条渐近线方程为y=$\frac{b}{a}$x,运用点到直线的距离公式,结合勾股定理和三角形的面积公式,化简整理解方程可得a=8,进而得到双曲线的实轴长.

解答 解:双曲线${C_1}:\frac{x^2}{4}-{y^2}=1$的离心率为$\frac{\sqrt{5}}{2}$,
设F2(c,0),双曲线C2一条渐近线方程为y=$\frac{b}{a}$x,
可得|F2M|=$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}$=b,
即有|OM|=$\sqrt{{c}^{2}-{b}^{2}}$=a,
由${S_{△OM{F_2}}}=16$,可得$\frac{1}{2}$ab=16,
即ab=32,又a2+b2=c2,且$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$,
解得a=8,b=4,c=4$\sqrt{5}$,
即有双曲线的实轴长为16.
故选:B.

点评 本题考查双曲线的方程和性质,注意运用点到直线的距离公式和离心率公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,空间四边形OABC中,E,F分别为OA,BC的中点,设$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,$\overrightarrow{OC}$=c,试用a,b,c表示$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA发射后又回到原点P(如图11).若光线QR经过△ABC的重心,则BP等于(  )
A.2B.1C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正方形的中心为(0,-1),其中一条边所在的直线方程为3x+y-2=0.求其他三条边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在矩形ABCD中,AB=2,AD=1,点P为矩形ABCD内一点,则使得$\overrightarrow{AP}$•$\overrightarrow{AC}$≥1的概率为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=(x+b)lnx,g(x)=alnx+$\frac{1-a}{2}{x^2}$-x(a≠1),已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.
(1)求b的值;
(2)若对任意x≥1,都有g(x)>$\frac{a}{a-1}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法中正确的是(  )
A.经过不同的三点有且只有一个平面
B.没有公共点的两条直线一定平行
C.垂直于同一平面的两直线是平行直线
D.垂直于同一平面的两平面是平行平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(α)=sinα•cosα.
(1)若f(α)=$\frac{1}{8}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求cosα-sinα的值;
(2)若α=-$\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线的方程为$\frac{x^2}{9}-\frac{y^2}{16}=1$,则此双曲线的实轴长为6.

查看答案和解析>>

同步练习册答案