精英家教网 > 高中数学 > 题目详情

已知函数对任意实数恒有且当时,有.
(1)判断的奇偶性;
(2)求在区间上的最大值;
(3)解关于的不等式.

(1)奇函数;(2)
(3)时,
时,
时,
时,

解析试题分析:(1)赋值法:先令,再令
(2)根据 以及当 时,有 ,利用函数单调性的定义判断得出上的减函数;并由单调性求其最值;
(3)由(1)和(2)的结论,先将不等式化为;再由函数的单调性转化为 关于的不等式的不同取值,分别讨论不等式的解.
试题解析:解(1)取

对任意恒成立 ∴为奇函数.
(2)任取, 则 

 又为奇函数 
在(-∞,+∞)上是减函数.
对任意,恒有

在[-3,3]上的最大值为6
(3)∵为奇函数,∴整理原式得
进一步可得 
在(-∞,+∞)上是减函数,
 
时,
时,
时,
时,
考点:1、赋值法解决抽象函数的有关问题;2、函数单调性的定义;3、分类讨论的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若函数的图象恒在轴上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数在区间 上有最大值,最小值.
(1)求函数的解析式;
(2)设.若时恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数定义在(―1,1)上,对于任意的,有,且当时,
(1)验证函数是否满足这些条件;
(2)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(3)若,求方程的解。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知α、β是方程x2+(2m-1)x+4-2m=0的两个实根,且α<2<β,求m的取值范围;(2)若方程x2+ax+2=0的两根都小于-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

画出下列函数的图象:
(1)y=x2-2x
(2)f(x)=
(3)y=x|2-x|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试判断并证明函数的单调性;
(2)当时,求函数的最大值的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若x∈时,不等式f(1+xlog2a)≤f(x-2)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案