精英家教网 > 高中数学 > 题目详情
2.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图(图1):
(Ⅰ)试根据频率分布直方图估计小区每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过6000元的居民中随机抽出2户进行捐款援助,求这两户在同一分组的概率;
(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
30
捐款不超
过500元
6
合计
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:临界值表参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

分析 (Ⅰ)根据频率分布直方图,即可估计小区平均每户居民的平均损失;
(Ⅱ)由频率分布直方图可得,损失不少于6000元的居民共有(0.00003+0.00003)×2000×50=6户,损失为6000~8000元的居民共有0.00003×2000×50=3户,损失不少于8000元的居民共有0.00003×2000×50=3户,即可求这两户在同一分组的概率;
(Ⅲ)求出K2,与临界值比较,即可得出结论.

解答 解:(Ⅰ)记每户居民的平均损失为$\overline x$元,则:$\begin{array}{l}\overline x=(1000×0.00015+3000×0.0002+5000×0.00009\\+7000×0.00003+9000×0.00003)×2000=3360\end{array}$…(2分)
(Ⅱ)由频率分布直方图可得,损失不少于6000元的居民共有(0.00003+0.00003)×2000×50=6户,
损失为6000~8000元的居民共有0.00003×2000×50=3户,
损失不少于8000元的居民共有0.00003×2000×50=3户,
因此,这两户在同一分组的概率为$P=\frac{3×2+3×2}{6×5}=\frac{2}{5}$…(7分)
(Ⅲ)如图:

经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
30939
捐款不超
过500元
5611
合计351550
K2=$\frac{50×(30×6-9×5)^{2}}{39×11×35×15}$≈4.046>3.841,
所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否4000元有关.…(12分)

点评 本题考查频率分布直方图,独立性检验知识,考查古典概型,考查学生分析解决问题的能力,知识综合性强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某校随机抽取100名学生高中学业水平考试的X科成绩,并将成绩分成5组,得到频率分布表(部分)如下.
(Ⅰ)直接写出频率分布表中①②③的值;
(Ⅱ)如果每组学生的平均分都是分组端点的平均值(例:第1组5个学生的平均分是$\frac{50+60}{2}=55$),估计该校学生本次学业水平测试X科的平均分;
(Ⅲ)学校向高校推荐了第5组的A、B、C和第4组的D、E一共5位同学,学业水平考试后,高校决定在这5名学生中随机抽取2名学生进行面试.求第4组至少有一名学生参加面试的概率?
组号分组频数频率
第1组[50,60)50.05
第2组[60,70)0.35
第3组[70,80)30
第4组[80,90)200.20
第5组[90,100]100.10
合计100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,$f(x)={(\frac{1}{2})^x}$-1,若在区间(-2,10]内,关于x的方程f(x)-loga(x+2)=0(a>1)恰有5个不同的实数根,则a的取值范围是(  )
A.$(2,\root{3}{12})$B.$(\root{3}{4},2\sqrt{2})$C.$(\root{3}{4},2)$D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)是R上以2为周期的奇函数,已知当x∈(0,1]时,f(x)=log2x,则f(x)在区间(l,2)上是(  )
A.减函数,且f(x)<0B.减函数,且f(x)>OC.增函数,且f(x)<0D.增函数,且f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.利用秦九韶算法分别计算f(x)=8x5+5x4+3x3+2x+1在x=2与x=-1时的值,并判断多项式f(x)在区间[-1,2]上有没有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)在定义域R上为偶函数,并且f(x+2)=-f(x),当2≤x≤3时,f(x)=x,则f(105.8)=2.2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)+1,若f(a)=$\frac{1}{3}$,则f(-a)的值为(  )
A.-$\frac{1}{3}$B.2C.$\frac{1}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点(x,y)满足$\left\{\begin{array}{l}x+y-3<0\\ x-2y-3<0\\ x>1\end{array}\right.$,则z=y-x的取值范围为(  )
A.(-2,1)B.[-2,1]C.(-3,1)D.[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)可导,求$\frac{dy}{dx}$.
y=f(lnx)

查看答案和解析>>

同步练习册答案