精英家教网 > 高中数学 > 题目详情
如图2所示,在边长为12的正方形AA'A'1A1中,点B,C在线段AA'上,且AB=3,BC=4,作BB1∥AA1,分别交A1A'1、AA'1于点B1、P,作CC1∥AA1,分别交A1A'1、AA'1于点C1、Q,将该正方形沿BB1、CC1折叠,使得A'A1′与AA1重合,构成如图3所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求证:AB⊥平面BCC1B1
(2)求平面APQ将三棱柱ABC-A1B1C1分成上、下两部分几何体的体积之比.
(3)在三棱柱ABC-A1B1C1中,求直线AP与直线A1Q所成角的余弦值.
【答案】分析:(1)在三棱柱ABC-A1B1C1中,证明AB垂直平面BCC1B1内的两条相交直线BC、BB1即可.
(2)说明AB为四棱锥A-BCQP的高,求出梯形BCQP的面积,即可求出平面APQ将三棱柱ABC-A1B1C1分成上部分的体积;同理求出下部分几何体的体积,即可得到它们之比.
(3)AB,BC,BB1两两互相垂直.以B为原点,建立如图所示的空间直角坐标系B-xyz,求出,利求直线AP与直线A1Q所成角的余弦值.
解答:解:(1)证明:在正方形AA'A'1A1中,∵A'C=AA'-AB-BC=5,
∴三棱柱ABC-A1B1C1的底面三角形ABC的边AC=5.∵AB=3,BC=4,
∴AB2+BC2=AC2,则AB⊥BC.∵四边形AA'A'1A1为正方形,AA1∥BB1
∴AB⊥BB1,而BC∩BB1=B,∴AB⊥平面BCC1B1
(2)解:∵AB⊥平面BCC1B1,∴AB为四棱锥A-BCQP的高.
∵四边形BCQP为直角梯形,且BP=AB=3,CQ=AB+BC=7,
∴梯形BCQP的面积为
∴四棱锥A-BCQP的体积
由(1)知B1B⊥AB,B1B⊥BC,且AB∩BC=B,∴B1B⊥平面ABC.
∴三棱柱ABC-A1B1C1为直棱柱,
∴三棱柱ABC-A1B1C1的体积为
故平面APQ将三棱柱ABC-A1B1C1分成上、下两部分的体积之比为
(3)解:由(1)、(2)可知,AB,BC,BB1两两互相垂直.
以B为原点,建立如图所示的空间直角坐标系B-xyz,
则A(3,0,0),A1(3,0,12),P(0,0,3),Q(0,4,7),
,∴
∵异面直线所成角的范围为
∴直线AP与A1Q所成角的余弦值为
点评:本小题主要考查空间几何体中线面的位置关系,面积与体积,空间向量等基础知识,考查空间想象能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图2所示,在边长为12的正方形AA'A'1A1中,点B,C在线段AA'上,且AB=3,BC=4,作BB1∥AA1,分别交A1A'1、AA'1于点B1、P,作CC1∥AA1,分别交A1A'1、AA'1于点C1、Q,将该正方形沿BB1、CC1折叠,使得A'A1′与AA1重合,构成如图3所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求证:AB⊥平面BCC1B1
(2)求平面APQ将三棱柱ABC-A1B1C1分成上、下两部分几何体的体积之比.
(3)在三棱柱ABC-A1B1C1中,求直线AP与直线A1Q所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省中山一中高三(上)第五次月考数学试卷(理科)(解析版) 题型:解答题

如图2所示,在边长为12的正方形AA'A'1A1中,点B,C在线段AA'上,且AB=3,BC=4,作BB1∥AA1,分别交A1A'1、AA'1于点B1、P,作CC1∥AA1,分别交A1A'1、AA'1于点C1、Q,将该正方形沿BB1、CC1折叠,使得A'A1′与AA1重合,构成如图3所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求证:AB⊥平面BCC1B1
(2)求平面APQ将三棱柱ABC-A1B1C1分成上、下两部分几何体的体积之比.
(3)在三棱柱ABC-A1B1C1中,求直线AP与直线A1Q所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2013年广东省茂名实验中学高考数学模拟试卷一(理科)(解析版) 题型:解答题

如图2所示,在边长为12的正方形AA'A'1A1中,点B,C在线段AA'上,且AB=3,BC=4,作BB1∥AA1,分别交A1A'1、AA'1于点B1、P,作CC1∥AA1,分别交A1A'1、AA'1于点C1、Q,将该正方形沿BB1、CC1折叠,使得A'A1′与AA1重合,构成如图3所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求证:AB⊥平面BCC1B1
(2)求平面APQ将三棱柱ABC-A1B1C1分成上、下两部分几何体的体积之比.
(3)在三棱柱ABC-A1B1C1中,求直线AP与直线A1Q所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2008年广东省广州市高考数学一模试卷(理科)(解析版) 题型:解答题

如图2所示,在边长为12的正方形AA'A'1A1中,点B,C在线段AA'上,且AB=3,BC=4,作BB1∥AA1,分别交A1A'1、AA'1于点B1、P,作CC1∥AA1,分别交A1A'1、AA'1于点C1、Q,将该正方形沿BB1、CC1折叠,使得A'A1′与AA1重合,构成如图3所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求证:AB⊥平面BCC1B1
(2)求平面APQ将三棱柱ABC-A1B1C1分成上、下两部分几何体的体积之比.
(3)在三棱柱ABC-A1B1C1中,求直线AP与直线A1Q所成角的余弦值.

查看答案和解析>>

同步练习册答案