精英家教网 > 高中数学 > 题目详情
精英家教网如图,在长方体ABCD-A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,
(1)求异面直线EF与A1D所成角的余弦值;
(2)证明AF⊥平面A1ED;
(3)求二面角A1-ED-F的正弦值.
分析:(1)在空间坐标系中计算出两个直线的方向向量的坐标,由数量公式即可求出两线夹角的余弦值.
(2)在平面中找出两条相交直线来,求出它们的方向向量,研究与向量
AF
内积为0即可得到线面垂直的条件.
(3)两个平面一个平面的法向量已知,利用向量垂直建立方程求出另一个平面的法向量,然后根据求求二面角的规则求出值即可.
解答:精英家教网解:(1)如图所示,建立空间直角坐标系,点A为坐标原点,设AB=1,依题意得D(0,2,0),
F(1,2,1),A1(0,0,4),E(1,
3
2
,0).
(1)易得
EF
=(0,
1
2
,1),
A1D
=(0,2,-4).
于是cos<
EF
A1D
>=
EF
A1D
|
EF
||
A1D
|
=-
3
5

所以异面直线EF与A1D所成角的余弦值为
3
5

(2)证明:连接ED,易知
AF
=(1,2,1),
EA1
=(-1,-
3
2
,4),
ED
=(-1,
1
2
,0),
于是
AF
EA1
=0,
AF
ED
=0.
因此,AF⊥EA1,AF⊥ED.
又EA1∩ED=E,所以AF⊥平面A1ED.
(3)设平面EFD的一个法向量为u=(x,y,z),则
u
• 
EF
=0
u
ED
=0

1
2
y+z=0
-x+
1
2
y=0

不妨令x=1,可得u=(1,2,-1).
由(2)可知,
AF
为平面A1ED的一个法向量.
于是cos<u,
AF
>=
u
AF
|
u
||
AF
|
=
2
3
,从而sin<u,
AF
>=
5
3

二面角A1-ED-F的正弦值是
5
3
点评:本题考查用向量法求异面直线所成的角,二面角,以及利用向量方法证明线面垂直,利用向量法求异面直线所成的角要注意异面直线所成角的范围与向量所成角的范围的不同.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图在长方体ABCD-A1B1C1D1中,三棱锥A1-ABC的面是直角三角形的个数为:
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,定义八个顶点都在某圆柱的底面圆周上的长方体叫做圆柱的内接长方体,圆柱也叫长方体的外接圆柱.设长方体ABCD-A1B1C1D1的长、宽、高分别为a,b,c(其中a>b>c),那么该长方体的外接圆柱侧面积的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题

(文科做)(本题满分14分)如图,在长方体

ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1EA1D;

(2)当EAB的中点时,求点E到面ACD1的距离;

(3)AE等于何值时,二面角D1ECD的大小为.                      

 

 

 

(理科做)(本题满分14分)

     如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =AA1 =M为侧棱CC1上一点,AMBA1

   (Ⅰ)求证:AM⊥平面A1BC

   (Ⅱ)求二面角BAMC的大小;

   (Ⅲ)求点C到平面ABM的距离.

 

 

 

 

 

查看答案和解析>>

同步练习册答案