(本小题满分12分)椭圆E的中心在坐标原点O,焦点在x轴上,离心率为.点P(1,)、A、B在椭圆E上,且 (m∈R);
(Ⅰ)求椭圆E的方程及直线AB的斜率;
(Ⅱ)求证:当△PAB的面积取得最大值时,原点O是△PAB的重心。
解:(Ⅰ)由=及解得a2=4,b2=3,………………1分
椭圆方程为; ……………………………………………………………2分
设A(x1,y1)、B(x2,y2), 由得
(x1+x2-2,y1+y2-3)=m(1,),即 ………………………3分
又,,两式相减得
;………………………………5分
(Ⅱ)设AB的方程为 y=,代入椭圆方程得:x2-tx+t2-3=0, ……………6分
△=3(4-t2),|AB|=,
点P到直线AB的距离为d=,
S△PAB == (-2<t<2). …………………8分
令f(t) =3(2-t)3(2+t),则f’(t)=-12(2-t)2(t+1),由f’(t)=0得t=-1或2(舍),
当-2<t<-1时,f’(t)>0,当-1<t<2时f’(t)<0,所以当t=-1时,f(t)有最大值81,
即△PAB的面积的最大值是; ………………………10分
根据韦达定理得 x1+x2=t=-1,而x1+x2=2+m,所以2+m=-1,得m=-3,
于是x1+x2+1=3+m=0,y1+y2+=3++=0,
因此△PAB的重心坐标为(0,0). …………………………………12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com