精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数满足

(1)求函数的解析式;

(2)求函数的单调区间;

(3)如果满足,那么称更靠近.当时,试比较哪个更靠近,并说明理由.

【答案】1

2)当时,函数的单调递增区间为;当时,函数的单调递增区间为,单调递减区间为

3更靠近

【解析】

试题分析:(1)两边求导,可建立关于的方程组,求得其值,即可得到解析式;(2)求导,对的取值进行分类讨论,即可得到结论;(3)设,从而问题等价于,通过对的取值范围进行分类讨论,利用求导判断单调性求极值,即可得到结论.

试题解析:(1,即,又;(2

时,,函数上单调递增,时,由时,单调递减;时,单调递增,综上,当时,函数的单调递增区间为;当时,函数的单调递增区间为,单调递减区间为;(3)设上为减函数,又

时,,当时,

上为增函数,又时,上为增函数,时,

,则上为减函数,

更靠近

时,

,则时为减函数,

时为减函数,

更靠近,综上:在时,更靠近

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(题文)某研究小组在电脑上进行人工降雨模拟实验,准备用ABC三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验数据统计如下:

方式

实施地点

大雨

中雨

小雨

模拟实验总次数

A

4

6

2

12

B

3

6

3

12

C

2

2

8

12

假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:

(1)求甲、乙、丙三地都恰为中雨的概率;

(2)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只要是小雨或中雨即达到理想状态,记甲、乙、丙三地中达到理想状态的个数为随机变量ξ,求随机变量ξ的分布列和均值E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图在三棱锥中, 分别为棱的中点,已知

求证(1)直线平面

(2)平面 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程表示焦点在y轴上的椭圆;命题q:椭圆(m>0)的离心率 e∈(,1),若pq为真,pq为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,曲线在点处的切线在两坐标轴上的截距之和为,求的值;

(2)若对于任意的及任意的,总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,四边形是矩形, ,平面平面.

(1)证明:

(2)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出定义:若(其中m为整数),则m叫做与实数x亲密的整数记作{x}m,在此基础上给出下列关于函数的四个说法:

①函数是增函数;

②函数的图象关于直线对称;

③函数上单调递增

④当时,函数有两个零点,

其中说法正确的序号是(

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市效外景区内一条笔直的公路经过三个景点ABC.景区管委会又开发了风景优美的景点D.经测量景点D位于景点A的北偏东30°方向且距A 8 km处,且位于景点B的正北方向,还位于景点C的北偏西75°方向 上,已知AB=5 km,ADBD.

(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长;

(2)求∠ACD的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)当a=3时,求A∩B;

(2)若a>0,且A∩B=,求实数a的取值范围.

查看答案和解析>>

同步练习册答案