精英家教网 > 高中数学 > 题目详情
2.设x、y是实数,且x2-2xy+y2-$\sqrt{2}$x-$\sqrt{2}$y+6=0,求u=x+y的最小值.

分析 利用配方法,即可求u=x+y的最小值.

解答 解:∵x2-2xy+y2-$\sqrt{2}$x-$\sqrt{2}$y+6=0,
∴(x-y)2=$\sqrt{2}$(x+y)-6≥0,
∴x+y≥$\frac{6}{\sqrt{2}}$=3$\sqrt{2}$,
当且仅当x=y时,u=x+y的最小值为3$\sqrt{2}$.

点评 本题考查配方法,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,a1=2,an+1=an+2n(n∈N*),则数列{an}的通项公式为2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和Sn,并满足an>0,4Sn=(an+1)2(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{bn}满足b1=3,bn=S${\;}_{{b}_{n-1}}$(n≥2,n∈N*),记cn=$\frac{{b}_{n}}{{b}_{n+1}-1}$,{cn}的前n项和为Tn,证明:$\frac{3}{8}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=sin(2x+φ)(0<φ<π),若将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位后所得图象对应的函数为偶函数,则实数φ的值为(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A(0,4),B(-2,0),则线段AB中点C的坐标是(  )
A.(-2,4)B.(-1,2)C.(1,2)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足a1=2,an+an+1=2n(n∈N*),求数列{an}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x2+px+q=0}中含有两个元素,集合B={2,4,5,6},C={1,2,3,4},若A∩C=A,A∩B=∅,求实数p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过圆O:x2+y2=4外一点M(4,-1)引圆的两条切线,则经过两切点的直线方程为4x-y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.判断下列函数的奇偶性:
(1)f(x)=x+3x3
(2)f(x)=(x-2)(x+2)

查看答案和解析>>

同步练习册答案