精英家教网 > 高中数学 > 题目详情
16.不等式$|{x-2}|+\frac{1}{x-1}>x-2+\frac{1}{x-1}$的解集是{x|x<1或1<x<2}.

分析 由题意$\left\{\begin{array}{l}{x-2<0}\\{x-1≠0}\end{array}\right.$,x<1或1<x<2,即可得出结论.

解答 解:由题意$\left\{\begin{array}{l}{x-2<0}\\{x-1≠0}\end{array}\right.$,∴x<1或1<x<2,
故答案为{x|x<1或1<x<2}.

点评 本题考查不等式的解法,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.若y=f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2})$的部分图象如图所示.
( I)求函数y=f(x)的解析式;
( II)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象;若y=g(x)图象的一个对称中心为$(\frac{5π}{6},0)$,求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.相传这个图形表达了阿基米德最引以自豪的发现.我们来重温这个伟大发现.经计算球的体积等于圆柱体积的$\frac{2}{3}$倍.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在实数集R上函数y=f(x)的反函数为y=f-1(x).若函数y=f(-x)的反函数是y=f-1(-x),则y=f(-x)是(  )
A.是奇函数,不是偶函数B.是偶函数,不是奇函数
C.既是奇函数数,又是偶函数D.既不是奇函数,也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“log2x<3”是“${({\frac{1}{2}})^{x-8}}>1$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某校1000名学生中,O型血有400人,A型血有300人,B型血有200人,AB型血有100人,为了研究血型与性格的关系,按照分层抽样的方法从中抽取样本.如果从A型血中抽取了12人,则从AB型血中应当抽取的人数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程sin2x+cosx+k=0有解,则实数k的取值范围为(  )
A.$-1≤k≤\frac{5}{4}$B.$-\frac{5}{4}≤k≤1$C.$0≤k≤\frac{5}{4}$D.$-\frac{5}{4}≤k≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\int_{\;-2}^{\;2}{(\sqrt{4-{x^2}}-{x^{2017}}})dx$=2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.己知双曲线E的中心在原点,F(5,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为(9,$\frac{9}{2}$),则E的方程为(  )
A.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

同步练习册答案