精英家教网 > 高中数学 > 题目详情

已知双曲线C:-y2=1,

(1)求双曲线C的渐近线方程;

(2)已知点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称点.记λ=·,求λ的取值范围;

(3)已知点D、E、M的坐标分别为(-2,-1)、(2,-1)、(0,1),P为双曲线C上在第一象限内的点.记l为经过原点与点P的直线,s为△DEM截直线l所得线段的长.试将s表示为直线l的斜率k的函数.

答案:
解析:

  (1)所求渐近线方程为

  (2)设P的坐标为(x0y0),则Q的坐标为(-x0,-y0)

  

  λ的取值范围是(-∞,-1].

  (3)若P为双曲线C上第一象限内的点,则直线l的斜率k

  由计算可得,当k

  k,∴s表示为直线l的斜率k的函数是

  


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x24
-y2=1
,P为双曲线C上的任意一点.
(1)写出双曲线的焦点坐标和渐近线方程;
(2)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
2
-y2 =1

(1)求双曲线C的渐近线方程;
(2)已知点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称点,记λ=
MP
MQ
.求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
4
-y2=1
和定点P(2,
1
2
)

(1)求过点P且与双曲线C只有一个公共点的直线方程;
(2)双曲线C上是否存在A,B两点,使得
OP
=
1
2
(
OA
+
OB
)
成立?若存在,求出直线AB的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)在平面直角坐标系xOy中,已知双曲线C:2x2-y2=1.
(1)设F是C的左焦点,M是C右支上一点,若|MF|=2
2
,求点M的坐标;
(2)过C的左焦点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;
(3)设斜率为k(|k|<
2
)的直线l交C于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ.

查看答案和解析>>

科目:高中数学 来源: 题型:

请考生在(1)(2)中任选一题作答,每小题12分.如都做,按所做的第(1)题计分.
(1)如图,在△ABC中,AB=AC,∠C=72°,⊙O过A、B两点且与BC相切于点B,与AC交于点D,连接B、D,若BC=
5
-1
,求AC的长.
(2)已知双曲线C:x2-y2=2,以双曲线的左焦点F为极点,射线FO(O为坐标原点)为极轴,点M为双曲线上任意一点,其极坐标是(ρ,θ),试根据双曲线的定义求出ρ与θ的关系式(将ρ用θ表示).

查看答案和解析>>

同步练习册答案