精英家教网 > 高中数学 > 题目详情
4.设Rt△ABC中,∠A=90°,AB=1,AC=$\sqrt{3}$,D是线段AC(除端点A、C)上一点,将△ABD沿BD翻折至平面A′BD,使平面A′BD⊥平面ABC,当A′在平面ABC的射影H到平面ABA′的距离最大时,AD的长度为(  )
A.$\root{4}{2}$B.$\root{3}{2}$C.$\root{4}{3}$D.$\root{3}{3}$

分析 如图所示,连接A′A.设AD=x,$(0<x<\sqrt{3})$.点H到平面A′AB的距离为h.由于${V}_{{A}^{′}-ABH}$=${V}_{H-{A}^{′}AB}$,可得$\frac{1}{3}×{A}^{′}H$•S△ABH=$\frac{1}{3}$h$•{S}_{△{A}^{′}AB}$,又A′H=$\frac{x}{\sqrt{{x}^{2}+1}}$=AH,S△ABH=$\frac{1}{2}AH•BH$,BH=$\frac{1}{\sqrt{{x}^{2}+1}}$.A′A=$\sqrt{2}AH$,${S}_{△AB{A}^{′}}$=$\frac{1}{2}{A}^{′}A$•$\sqrt{1-\frac{1}{4}({A}^{′}A)^{2}}$,代入化简利用基本不等式的性质即可得出.

解答 解:如图所示,连接A′A.
设AD=x,$(0<x<\sqrt{3})$.点H到平面A′AB的距离为h.
∵${V}_{{A}^{′}-ABH}$=${V}_{H-{A}^{′}AB}$,
$\frac{1}{3}×{A}^{′}H$•S△ABH=$\frac{1}{3}$h$•{S}_{△{A}^{′}AB}$,
又A′H=$\frac{x}{\sqrt{{x}^{2}+1}}$=AH,S△ABH=$\frac{1}{2}AH•BH$,BH=$\frac{1}{\sqrt{{x}^{2}+1}}$.
A′A=$\sqrt{2}AH$,${S}_{△AB{A}^{′}}$=$\frac{1}{2}{A}^{′}A$•$\sqrt{1-\frac{1}{4}({A}^{′}A)^{2}}$,
h=$\frac{{A}^{′}H•BH}{\sqrt{2}×\sqrt{1-\frac{1}{2}A{H}^{2}}}$=$\frac{\frac{x}{\sqrt{{x}^{2}+1}}×\frac{1}{\sqrt{{x}^{2}+1}}}{\sqrt{2-\frac{{x}^{2}}{{x}^{2}+1}}}$=$\frac{x}{\sqrt{{x}^{4}+3{x}^{2}+2}}$=$\frac{1}{\sqrt{{x}^{2}+\frac{2}{{x}^{2}}+3}}$≤$\frac{1}{\sqrt{2\sqrt{2}+3}}$,当且仅当x=$\root{4}{2}$时取等号.
∴当A′在平面ABC的射影H到平面ABA′的距离最大时,AD的长度为$\root{4}{2}$.
故选:A.

点评 本题考查了空间线面位置关系、三棱锥体积计算公式、勾股定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年内蒙古高二理上月考一数学理试卷(解析版) 题型:选择题

上有一点,它到的距离与它到焦点的距离之和最小,则点的坐标是( )

A.(-2,1) B.(1,2) C.(2,1) D.(-1,2)

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(理)试卷(解析版) 题型:填空题

过点且与直线垂直的直线方程为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.半圆C(圆心为点C)的极坐标方程为ρ=2sinθ,θ∈($\frac{π}{4}$,$\frac{3π}{4}$).
(Ⅰ)求半圆C的参数方程;
(Ⅱ)直线l与两坐标轴的交点分别为A,B,其中A(0,-2),点D在半圆C上,且直线CD的倾斜角是直线l倾斜角的2倍,若△ABD的面积为4,求点D的直角坐标.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(理)试卷(解析版) 题型:选择题

上到直线的距离为的点共有( )

A.1个 B.2个 C. 3个 D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知D为以AB为斜边的Rt△ABC的外接圆O上一点,CE⊥AB,BD交AC,CE的交点分别为F,G,且G为BF中点,
(1)求证:BC=CD;
(2)过点C作圆O的切线交AD延长线于点H,若AB=4,DH=1,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD是平行四边形,∠ADC=120°,AB=2AD.
(1)求证:平面PAD⊥平面PBD;
(2)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x-$\frac{1}{x}$-2mlnx(m∈R),讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.把4封不同的信投进5个不同的邮箱中,则总共投法的种数为(  )
A.20B.$A_5^4$C.45D.54

查看答案和解析>>

同步练习册答案