精英家教网 > 高中数学 > 题目详情
5.设x∈R,定义符号函数sng(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,则下列正确的是(  )
A.sinx•sng(x)=sin|x|.B.sinx•sng(x)=|sinx|C.|sinx|•sng(x)=sin|x|D.sin|x|•sng(x)=|sinx|

分析 根据已知中符号函数的定义,结合诱导公式,可得sinx•sng(x)=sin|x|.

解答 解:①当x>0时,sinx•sng(x)=sinx,
当x=0时,sinx•sng(x)=0,
当x<0时,sinx•sng(x)=-sinx,
②当x>0时,sin|x|=sinx,
当x=0时,sin|x|=0,
当x<0时,sin|x|=sin(-x)=-sinx,
故sinx•sng(x)=sin|x|.
故选:A

点评 本题考查的知识点是分段函数的应用,诱导公式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,两个顶点分别为A(-a,0),B(a,0),点M(-1,0),且3$\overrightarrow{AM}$=$\overrightarrow{MB}$,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,且点C在x轴上方.
(1)求椭圆E的方程;
(2)若BC⊥CD,求k的值;
(3)记直线BC,BD的斜率分别为k1,k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法中,正确的是(  )
A.经过不同的三点有且只有一个平面
B.分别在两个平面内的两条直线是异面直线
C.垂直于同一个平面的两条直线平行
D.垂直于同一个平面的两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.(理)设F1,F2分别是双曲线$\frac{x^2}{9}-\frac{y^2}{4}=1$的左、右焦点,若点P在双曲线上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$=(  )
A.$\sqrt{13}$B.2$\sqrt{17}$C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$f(x)=\frac{1}{{\sqrt{{{log}_2}^{(2x-1)}}}}$的定义域为(  )
A.(1,+∞)B.$(\frac{1}{2},+∞)$C.$(\frac{1}{2},1)∪(1,+∞)$D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$的起点相同且满足$|{\overrightarrow a}|=|{\overrightarrow a-\overrightarrow b}|=2,|{\overrightarrow b}|=\sqrt{6},(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)=0$,则$\overrightarrow{|c|}$的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等差数列{an}中,a1=2,a5=a4+2,则a3=(  )
A.4B.10C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.两条不平行的直线,它们的平行投影不可能是(  )
A.一点和一条直线B.两条平行直线C.两个点D.两条相交直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.求值:sin1440°=0.

查看答案和解析>>

同步练习册答案