精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数满足,且

)求的解析式.

)若函数在区间上是单调函数,求实数的取值范围.

)若关于的方程有区间上有唯一实数根,求实数的取值范围(相等的实数根算一个).

【答案】(1).

(2).

(3).

【解析】试题分析:(1)只要设,代入已知条件即可求得;(2)由(1)知是二次函数,其单调性与对称轴有关,题意说明其对称轴不在区间上;(3)关于的方程是二次方程,它在区间上有唯一实数根,可能是在上是两个相等的实根,也可能是一根在此区间上,另一根在此区间外(注意区间端点的讨论).

试题解析:(1)设,代入

,对于恒成立,故

又由,得,解得

2)因为

又函数上是单调函数,故

截得

故实数的取值范围是

3)由方程

即要求函数上有唯一的零点,

,则,代入原方程得3,不合题意;

,则,代入原方程得2,满足提议,故成立;

,则,代入原方程得,满足提议,故成立;

时,由

综上,实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】海水受日月的引力,在一定的时候发生涨落的现象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天时间与水深(单位:米)的关系表:

时刻

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

24:00

水深

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

(1)请用一个函数来近似描述这个港口的水深y与时间t的函数关系;

(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上认为是安全的(船舶停靠时,船底只要不碰海底即可)。某船吃水深度(船底离地面的距离)为6.5米。

Ⅰ)如果该船是旅游船,1:00进港希望在同一天内安全出港,它至多能在港内停留多长时间(忽略进出港所需时间)?

Ⅱ)如果该船是货船,在2:00开始卸货,吃水深度以每小时0.5米的速度减少,由于台风等天气原因该船必须在10:00之前离开该港口,为了使卸下的货物尽可能多而且能安全驶离该港口,那么该船在什么整点时刻必须停止卸货(忽略出港所需时间)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问7分,2小问5分

设函数

1处取得极值,确定的值,并求此时曲线在点处的切线方程;

2上为减函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率e= ,右顶点、上顶点分别为A,B,直线AB被圆O:x2+y2=1截得的弦长为
(1)求椭圆C的方程;
(2)设过点B且斜率为k的动直线l与椭圆C的另一个交点为M, =λ( ),若点N在圆O上,求正实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时,.

(1)已画出函数轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间;

⑵写出函数的解析式和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利民中学为了了解该校高一年级学生的数学成绩,从高一年级期中考试成绩中抽出100名学生的成绩,由成绩得到如下的频率分布直方图.

根据以上频率分布直方图,回答下列问题:

(1)求这100名学生成绩的及格率;(大于等于60分为及格)

(2)试比较这100名学生的平均成绩和中位数的大小.(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,函数处的切线互相垂直,求的值;

2)若函数在定义域内不单调,求的取值范围;

(3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB= AC = AA1=2,M,N分别是A1B1,BC的中点.

(1)证明:MN平面ACC1A1

(2)求二面角M﹣AN﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 分别是椭圆的左、右焦点, 是椭圆的顶点, 是直线与椭圆的另一个交点, .

(1)求椭圆的离心率;

(2)已知的面积为,求的值.

查看答案和解析>>

同步练习册答案