精英家教网 > 高中数学 > 题目详情

(19) (本小题满分12分)(注决:在试题卷上作答无效)

   如图,四棱锥中,底面为矩形,底面

,点在侧棱上,。       

证明:是侧棱的中点;

求二面角的大小。  

(1)略 (2)二面角的大小为


解析:

建立空间直角坐标系,则D(0,0,0)

(利用相似比设)则,由夹角公式得,,则,故点M是SC的中点。

(2)由上可知,,设平面AMB的法向量为

,,解得为

设平面SAM的法向量为

,,解得为

由法向量的夹角公式可以得到=

故所求的二面角的平面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

. 19(本小题满分14分)

       已知椭圆 (a>b>0)与直线

       x+y-1 = 0相交于AB两点,且OAOB

       (O为坐标原点).

(I)   求 + 的值;

(II)  若椭圆长轴长的取值范围是[,],

       求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省福州市高三质量检测理科数学 题型:解答题

(本小题满分1 3分)

如图①,一条宽为l km的两平行河岸有村庄A和供电站C,村庄B与A、C的直线距离都是2km,BC与河岸垂直,垂足为D.现要修建电缆,从供电站C向村庄A、B供电.修建地下电缆、水下电缆的费用分别是2万元/km、4万元/km.

    (Ⅰ)已知村庄A与B原来铺设有旧电缆仰,需要改造,旧电缆的改造费用是0.5万元/km.现

决定利用旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值.

(Ⅱ)如图②,点E在线段AD上,且铺设电缆的线路为CE、EA、EB.若∠DCE=θ (0≤θ≤),试用θ表示出总施工费用y(万元)的解析式,并求y的最小值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省福州市高三第一学期期末质量检测理科数学 题型:解答题

(本小题满分1 3分)如图,在△ABC中,已知B=,AC=4,D为BC边上一点.

(I)若AD=2,S△ABC=2,求DC的长;

(Ⅱ)若AB=AD,试求△ADC的周长的最大值.

  

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010湖北理数)19(本小题满分12分)

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.

(Ⅰ)求曲线C的方程;

(Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案