精英家教网 > 高中数学 > 题目详情

函数f(x)=xα,对任意的x∈(-1,0)∪(0,1),若不等式f(x)>x恒成立,则在数学公式的条件下,α可以取的值的个数是


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
D
分析:由题设条件,分别把中的六个元素逐个代入f(x)=xα,逐个进行验正,能够得到α可以取的值的个数.
解答:当α=-1时,f(x)=x-1
任意的x∈(-1,0)∪(0,1),
不等式f(x)>x不成立,
∴α≠-1;
当α=0时,f(x)=x0=1,
任意的x∈(-1,0)∪(0,1),
不等式f(x)>x不成立,
∴α≠0;
当α=时,f(x)=x
任意的x∈(-1,0)∪(0,1),
不等式f(x)>x不成立,
∴α≠
当α=1时,f(x)=x,
任意的x∈(-1,0)∪(0,1),
不等式f(x)>x不成立,
∴α≠1;
当α=2时,f(x)=x2
任意的x∈(-1,0)∪(0,1),
不等式f(x)>x不成立,
∴α≠2;
当α=3时,f(x)=x3
任意的x∈(-1,0)∪(0,1),
不等式f(x)>x恒成立,
∴α=3.
综上所述,α可以取的值只有3.
故选D.
点评:本题考查幂函数的性质和应用,解题时要认真审题,注意采用逐个验正的方法能够得到答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案