【题目】如图,、是两条公路(近似看成两条直线),,在内有一纪念塔(大小忽略不计),已知到直线、的距离分别为、,=6千米,=12千米.现经过纪念塔修建一条直线型小路,与两条公路、分别交于点、.
(1)求纪念塔到两条公路交点处的距离;
(2)若纪念塔为小路的中点,求小路的长.
【答案】(1)到点处的距离为千米;(2)小路的长为24千米.
【解析】试题分析:
(1)建立平面直角坐标系,结合点到直线距离公式可得到点处的距离为千米;
(2)利用两点之间的距离公式有小路的长为24千米.
试题解析:
解法一:(1)以为原点,所在直线为轴,建立直角坐标系,
则直线的方程为,
又到直线的距离=6千米,设,
所以,解得或(舍负),所以. 7分
(2)因为小路的中点,点在轴上,即,所以,
又点在上,所以,所以,
由(1)知,所以,
.
答:(1)到点处的距离为千米;(2)小路的长为24千米.
解法二:(1)设,则,
因到直线、的距离分别为、,=6千米,=12千米,
所以,
所以,化简得,
又,所以,.
(2)设,则,
因为小路的中点,即,
所以,即,
解得,所以.
答:(1)到点处的距离为千米;(2)小路的长为24千米.
科目:高中数学 来源: 题型:
【题目】对定义在区间上的函数和,如果对任意,都有成立,那么称函数在区间上可被替代,称为“替代区间”.给出以下问题:
①在区间上可被替代;
②可被替代的一个“替代区间”为;
③在区间可被替代,则;
④(),(),则存在实数(),使得在区间上被替代; 其中真命题有 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在12件同类型的零件中有2件次品,抽取3次进行检验,每次抽取1件,并且取出后不再放回,若以ξ和η分别表示取到的次品数和正品数.
(1)求ξ的分布列、均值和方差;
(2)求η的分布列、均值和方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,离心率为,分别为左右焦点.
(1)求椭圆的标准方程;
(2)若上存在两个点,椭圆上有两个点满足三点共线,三点共线,且,求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b是不同的直线,α,β是不同的平面,则下列四个命题中正确的是________.(填序号)
① 若a⊥b,a⊥α,则b∥α;② 若a∥α,α⊥β,则a⊥β;
③ 若a⊥β,α⊥β,则a∥α;④ 若a⊥b,a⊥α,b⊥β,则α⊥β.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是,点在直径上,且.
(1)若米,求的长;
(2)设, 求该空地产生最大经济价值时种植甲种水果的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com