精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知点,直线,设圆的半径为,且圆心在直线上.

)若圆心的坐标为,过点作圆的切线,求切线的方程.

)若圆上存在点,使,求圆心的横坐标的取值范围.

【答案】;(

【解析】试题分析:1)根据圆心与半径得到圆的方程,设出切线方程为利用圆心到切线的距离1解出的值即可得切线方程;2)设,由,利用两点间的距离公式列出关系式,整理后得到点的轨迹为以为圆心,2为半径的圆,可记为圆,由在圆上,得到圆与圆相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到的范围.

试题解析:)圆心的坐标,半径为,圆的方程:

又设切线的方程为

∴切线到圆心的距离

,即为

切线的方程为

)设点,由,知: ,化简得:

∴点的轨迹方程以为圆心,半径为的圆,记为圆

∵点在圆上,∴圆与圆的关系为相切或相交,

∴解不等式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中, 台体体积公式: 其中分别为台体上、下底面面积, 为台体高.

1)证明:直线 平面

2)若, ,三棱锥的体积,求 该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,证明: 为偶函数;

(2)若上单调递增,求实数的取值范围;

(3)若,求实数的取值范围,使上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足:

①对于任意的,都有

②当时,,且

(1)求的值,并判断函数的奇偶性;

(2)判断函数上的单调性;

(3)求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在海岸A处,发现南偏东45°方向距A(2-2)海里的B处有一艘走私船,在A处正北方向,距A海里的C处的缉私船立即奉命以10海里/时的速度追截走私船.

(1)刚发现走私船时,求两船的距离;

(2)若走私船正以10海里/时的速度从B处向南偏东75°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(精确到分钟,参考数据:≈1.4,≈2.5).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1 , 直线C2的极坐标方程分别为ρ=4sinθ,ρcos( )=2
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中, 平面 的中点.

(1)求四棱锥的体积;

(2)求证:

(3)判断线段上是否存在一点 (与点不重合),使得四点共面? (结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且与椭圆 有相同的焦点.

(1)求椭圆的标准方程;

(2)若动直线与椭圆有且只有一个公共点,且与直线交于点,问:以线段为直径的圆是否经过一定点?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图像经过点 ,且满足

(1)求的解析式;

(2)已知,求函数的最大值和最小值;

函数的图像上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由

查看答案和解析>>

同步练习册答案