精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,ABCD为平行四边形,平面PAB,,.M为PB的中点.

(1)求证:PD//平面AMC;
(2)求锐二面角B-AC-M的余弦值.

(1)证明过程详见解析;(2).

解析试题分析:
(1)连接,设相交于点,连接,要证明线面平行,只需要在面AMC中找到一条直线OM与PD平行即可,该问考虑构造三角形的中位线来证明,来证明线面平行,即OM为三角形PBD是边PD的中位线,线线平行就可以得到线面平行.
(2)求二面角的关键是找到二面角的平面角,根据角BPA为30度且AB为PB的一半利用三角形正弦定理即可证明三角形ABP是以角PAB为直角的直角三角形,即可以得到PA与AB垂直,由BC与面PAB垂直可以得到BC与PA垂直,进而有PA垂直于面ABCD中的两条相交的线段,则有PA垂直与底面ABCD.为作出得到二面角的平面角,作,垂足为,连接,则有MF为三角形PAB的中位线,得到MF也垂直于底面,即PA与AC垂直,又AC与GF垂直,则有角MGF就是所求二面角的平面角,利用中位线求出MF,利用勾股定理求出GF长度,得到二面角的平面角MGF的三角函数值,就得到求出二面角的角度.
试题解析:

(1)证明:连接,设相交于点,连接
∵?四边形是平行四边形,∴点的中点.   2分
的中点,∴的中位线,
//.?????????   4分

//.?????    6分
(2)不妨设.
中,,
,
,且.        8分
平面平面,?故
,∴.
的中点,连接,则//,且.   10分
平面,.
,垂足为,连接
,∴
为二面角的平面角.?        12分
中,,得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求证:BF∥平面ACE;
(2)求证:BF⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。

(1)求证:EF∥平面PAD;
(2)求证:平面PAD⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧面为菱形,且的中点.

(1)求证:平面平面
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,D是AC的中点。

(1)求证:平面
(2)求二面角的大小;
(3)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥
平面的中点.

(1)求证:∥平面
(2)求证:平面平面
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点

(1)求证:CE∥平面PAD;
(2)求证:平面EFG⊥平面EMN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四棱锥PABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.

(1)求证:PB∥平面EFH;
(2)求证:PD⊥平面AHF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正三棱柱ABCA1B1C1中,已知AB=A1A,D为C1C的中点,O为A1B与AB1的交点.
 
(1)求证:AB1⊥平面A1BD;
(2)若点E为AO的中点,求证:EC∥平面A1BD.

查看答案和解析>>

同步练习册答案