精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体ABCD﹣A1B1C1D1中,E为BC1的中点,则DE与面BCC1B1所成角的正切值为(

A.
B.
C.
D.

【答案】C
【解析】解:设正方体ABCD﹣A1B1C1D1的棱长为2,
以D为原点,以DA为x轴,以DC为y轴,
以DD1为z轴,建立空直角坐标系,
∵E为BC1的中点,
∴D(0,0,0),E(1,2,1),
=(1,2,1),
设DE与面BCC1B1所成角的平面角为θ,
∵面BCC1B1的法向量
∴sinθ=|cos< >|=| |=
∴cosθ= =
∴tanθ= =
故选:C.

【考点精析】关于本题考查的空间角的异面直线所成的角,需要了解已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系 xOy 中,圆锥曲线 C 的参数方程为 为参数),定点 , F1,F2 是圆锥曲线 C 的左,右焦点.
(1)以原点为极点、 x 轴正半轴为极轴建立极坐标系,求经过点 F1 且平行于直线AF2 的直线 l 的极坐标方程;
(2)在(1)的条件下,设直线 l 与圆锥曲线 C 交于 E,F 两点,求弦 EF 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设四棱锥P-ABCD的底面不是平行四边形,用平面去截此四棱锥,使得截面是平行四边形,则这样的平面( )
A.不存在
B.有且只有1个
C.恰好有4个
D.有无数多个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+φ)+cos(2x+φ)的图象与函数 的图象关于y轴对称,则φ的值可以为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c.已知acosB﹣c=
(1)求角A的大小;
(2)若b﹣c= ,a=3+ ,求BC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线 =1(a,b>0)的右焦点F作一条渐近线的垂线,垂足为P,线段OP的垂直平分线交y轴于点Q(其中O为坐标原点).若△OFP的面积是△OPQ的面积的4倍,则该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,已知a1= ,an+1=
(1)证明:an<an+1
(2)证明:当n≥2时,( <2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点O,焦点在x轴上的椭圆的一个顶点为B(0,1),B到焦点的距离为2.

(1)求椭圆的标准方程;
(2)设P,Q是椭圆上异于点B的任意两点,且BP⊥BQ,线段PQ的中垂线l与x轴的交点为(x0 , 0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为(x﹣3)2+y2=1,圆M的方程为(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),过M上任意一点P作圆C的两条切线PA,PB,切点分别为A、B,则∠APB的最大值为

查看答案和解析>>

同步练习册答案