精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-1,g(x)=a|x-1|.
(1)若关于x的方程丨f(x)丨=g(x)只有一个实数解,求实数a的取值范围;
(2)若当x∈R时,不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(3)从[0,+∞),[-3,0),(-∞,3)三个区间中,任意选取一个区间作为实数a的取值范围,求此时函数h(x)=|f(x)|+g(x)在区间[-2,2]上的最大值.
分析:(1)方程|f(x)|=g(x)可化为|x-1|(|x+1|-a)=0,易知x=1已是该方程的根,从而要使原方程只有一解,即要求方程|x+1|=a有且仅有一个等于1的解或无解,结合图象可得a的范围;
(2)不等式f(x)≥g(x)对x∈R恒成立,即(x2-1)≥a|x-1|(*)对x∈R恒成立,分x=1,x≠1两种情况进行讨论,分离出参数a后转化为求函数的最值即可;
(3)先把h(x)化为分段函数,选取不同区间时,按照对称轴与区间的位置关系进行讨论,根据函数的单调性可求得函数的最大值,注意要把各段上的最大值进行比较;
解答:解:(1)方程|f(x)|=g(x),即|x2-1|=a|x-1|,变形得|x-1|(|x+1|-a)=0,
显然,x=1已是该方程的根,从而要使原方程只有一解,即要求方程|x+1|=a有且仅有一个等于1的解或无解,
作出函数y=|x+1|的图象如图所示:
结合图形得a<0.
(2)不等式f(x)≥g(x)对x∈R恒成立,即(x2-1)≥a|x-1|(*)对x∈R恒成立,
①当x=1时,(*)显然成立,此时a∈R;
②当x≠1时,(*)可变形为 a≤
x2-1
|x-1|
,令 φ(x)=
x2-1
|x-1|
=
x+1,x>1
-(x+1),x<1

∵当x>1时,φ(x)>2,当x<1时,φ(x)>-2,
∴φ(x)>-2,故此时a≤-2.
综合①②,得所求实数a的取值范围是a≤-2.
(3)∵h(x)=|f(x)|+g(x)=|x2-1|+a|x-1|=
x2+ax-a-1,x≥1
-x2-ax+a+1,-1≤x<1
x2-ax+a-1,x<-1

选取区间[0,+∞)为实数a的取值范围,则
①当
a
2
>1即a>2时,可知h(x)在[-2,1]上递减,在[1,2]上递增,
且h(-2)=3a+3,h(2)=a+3,经比较,此时h(x)在[-2,2]上的最大值为3a+3;
②当0
a
2
1即0≤a≤2时,可知,h(x)在[-2,-1],[-
a
2
,1]上递减,在[-1,-
a
2
],[1,2]上递增,
且h(-2)=3a+3,h(2)=a+3,h(-
a
2
)=
a2
4
+a+1,
经比较,知此时h(x)在[-2,2]上的最大值为3a+3.
选区间[-3,0]为实数a的取值范围,则
①当-1
a
2
<0即-2≤a<0时,可知h(x)在[-2,-1],[-
a
2
,1]上递减,在[-1,-
a
2
],[1,2]上递增,
且h(-2)=3a+3,h(2)=a+3,h(-
a
2
)=
a2
4
+a+1,
经比较,知此时h(x)在[-2,2]上的最大值为a+3;
②当-
3
2
a
2
<-1即-3≤a<-2时,可知h(x)在[-2,
a
2
],[1,-
a
2
]上递减,在[
a
2
,1],[-
a
2
,2]上递增,
且h(-2)=3a+3<0,h(2)=a+3≥0,
经比较,知此时h(x)在[-2,2]上的最大值为a+3,
综上所述,当-3≤a<0时,h(x)在[-2,2]上的最大值为a+3.
选取区间(-∞,-3)为实数a的取值范围,
a
2
<-
3
2
,可知h(x)在[-2,1]上递减,在[1,2]上递增,
故此时h(x)在[-2,2]上的最大值为h(1)=0,
综上所述,当a<-3时,h(x)在[-2,2]上的最大值为0..
点评:本题考查函数的零点和二次函数在定区间上的最值问题,其中求出函数的解析式是关键,求出分段函数在各断上的最值,再比较大小是难点,考查运算能力和分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案