精英家教网 > 高中数学 > 题目详情
11.若定义在x∈(-∞,0)∪(0,+∞)的偶函数y=f(x)在(-∞,0)上的解析式为$f(x)=ln(-\frac{1}{x})$,则函数y=f(x)的图象在点(2,f(2))处的切线斜率为-$\frac{1}{2}$.

分析 由偶函数的定义可得f(-x)=f(x),即有x>0时,f(x)=ln$\frac{1}{x}$,求出导数,即可得到f(x)在x=2处切线的斜率.

解答 解:偶函数y=f(x),有f(-x)=f(x),
可得x>0时,f(x)=ln$\frac{1}{x}$,
导数f′(x)=-$\frac{1}{x}$,
即有函数y=f(x)的图象在点(2,f(2))处的切线斜率为-$\frac{1}{2}$,
故答案为:-$\frac{1}{2}$.

点评 本题考函数的奇偶性的运用:求解析式,考查导数的几何意义,求切线的斜率,正确求导是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.等差数列{an}中,Sn为前n项和,若$\frac{{S}_{4}}{2{S}_{6}}$=-$\frac{1}{3}$,则$\frac{{S}_{5}}{{S}_{7}}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.
(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2交点的直角坐标;
(Ⅱ)求圆C1与C2的公共弦所在直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列有关命题的说法中错误的是(  )
A.“若x2+y2=0,则x,y全为0”的否命题是真命题
B.函数f(x)=ex+x-2的零点所在区间是(1,2)
C.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x2-3x+2≠0”
D.对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合X是实数集R的子集,如果x0∈R,满足:对任意a>0,都存在x∈X,使得0<|x-x0|<a,则称x0为集合X的聚点,现有如下四个集合:
①$\{\frac{2n+1}{n}|n∈Z,n≥2\}$②{x∈R|x≠1}③$\{\frac{n-1}{n}|n∈Z,n≥1\}$④整数集Z;
其中以1为聚点的集合是(  )
A.②③B.①④C.①③D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面是一程序,该程序的运行结果是(  )
A.1,2B.1,1C.2,1D.2,2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={0,1},B={1,2,3},则A∩B={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设集合A={x|x2+2x-3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在某样本的频率分布直方图中,共有7个小长方形,若第三个小长方形的面积为其他6个小长方形的面积和的$\frac{1}{4}$,且样本容量为100,则第三组数据的频数为(  )
A.25B.0.2C.0.25D.20

查看答案和解析>>

同步练习册答案