精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为 (t为参数),曲线C1的方程为ρ(ρ-4sin θ)=12,定点A(6,0),点P是曲线C1上的动点,QAP的中点.

(1)求点Q的轨迹C2的直角坐标方程;

(2)直线l与直线C2交于AB两点,若|AB|≥2,求实数a的取值范围.

【答案】(1)(x-3)2+(y-1)2=4,(2)

【解析】

(1)先根据将曲线C1的极坐标方程化为直角坐标方程,再根据中点坐标公式得用Q坐标表示P,代入点P满足得曲线C1直角坐标方程,即得点Q的轨迹C2的直角坐标方程;(2)根据垂径定理得圆心(3,1)到直线的距离不大于1,再消参数得直线l的直角坐标方程,最后利用点到直线距离公式化简不等式,解出实数a的取值范围.

(1)根据题意得,

曲线C1的直角坐标方程为x2y2-4y=12,

设点P(x′,y′),Q(xy),

根据中点坐标公式,得

代入x2y2-4y=12,

得点Q的轨迹C2的直角坐标方程为(x-3)2+(y-1)2=4,

(2)直线l的直角坐标方程为yax,根据题意,得圆心(3,1)到直线的距离d=1,即≤1,

解得0≤a.

∴实数a的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

I)若曲线存在斜率为-1的切线,求实数a的取值范围;

II)求的单调区间;

III)设函数,求证:当时, 上存在极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了整顿食品的安全卫生,食品监督部门对某食品厂生产甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克).

规定:当食品中的有害微量元素的含量在时为一等品,在为二等品,20以上为劣质品.

1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个,求甲的一等品数与乙的一等品数相等的概率;

2)每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元,根据上表统计得到甲、乙两种食品为一等品、二等品、劣质品的频率,分别估计这两种食品为一等品、二等品、劣质品的概率,若分别从甲、乙食品中各抽取1件,设这两件食品给该厂带来的盈利为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM2.5是空气质量的一个重要指标,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35μg/m3以下空气质量为一级,在35μg/m375μg/m3之间空气质量为二级,在75μg/m3以上空气质量为超标.如图是某市2019121日到10PM2.5日均值(单位:μg/m3)的统计数据,则下列叙述不正确的是(

A.10天中,125日的空气质量超标

B.10天中有5天空气质量为二级

C.5日到10日,PM2.5日均值逐渐降低

D.10天的PM2.5日均值的中位数是47

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是由具有公共直角边的两块直角三角板()组成的三角形,如左下图所示.其中,.现将沿斜边进行翻折成不在平面上).分别为的中点,则在翻折过程中,下列命题不正确的是( )

A. 在线段上存在一定点,使得的长度是定值

B. 在某个球面上运动

C. 存在某个位置,使得直线所成角为

D. 对于任意位置,二面角始终大于二面角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自湖北爆发新型冠状病毒肺炎疫情以来,湖北某市医护人员和医疗、生活物资严重匮乏,全国各地纷纷驰援.某运输队接到从武汉送往该市物资的任务,该运输队有8辆载重为6tA型卡车,6辆载重为10tB型卡车,10名驾驶员,要求此运输队每天至少运送240t物资.已知每辆卡车每天往返的次数为A型卡车5次,B型卡车4次,每辆卡车每天往返的成本A型卡车1200元,B型卡车1800元,则每天派出运输队所花的成本最低为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数的解析式来琢磨函数的图象特征.如函数的图象大致为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三角形的边长为,将它沿高折叠,使点与点间的距离为,则四面体外接球的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数().

1)讨论函数的单调性;

2)求证: .

查看答案和解析>>

同步练习册答案