【题目】给出如下四个说法:
①已知p,q都是命题,若p∧q为假命题,则p,q均为假命题;
②命题“若a>b,则3a>3b-1”的否命题为“若a≤b,则3a≤3b-1”;
③命题“x∈R,x2+1≥0”的否定是“x0∈R,+1<0”;
④“a≥0”是“x0∈R,a+x0+1≥0”的充分必要条件.
其中正确说法的序号是 ( )
A. ①③ B. ②③ C. ②③④ D. ②④
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C: =1(a>b>0)的离心率为 ,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求 的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR||OS|为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,b∈R)是复平面上的四个点,且向量对应的复数分别为z1,z2.
(1)若z1+z2=1+i,求z1,z2;
(2)若|z1+z2|=2,z1-z2为实数,求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量y(件) | 100 | 94 | 93 | 90 | 85 | 78 |
(1)求回归直线方程求回归直线方程.
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均不为0的数列{an}满足a1=a,a2=b,且an2=an﹣1an+1+λ(n≥2,n∈N),其中λ∈R.
(1)若λ=0,求证:数列{an}是等比数列;
(2)求证:数列{an}是等差数列的充要条件是λ=(b﹣a)2;
(3)若数列{bn}为各项均为正数的等比数列,且对任意的n∈N* , 满足bn﹣an=1,求证:数列{(﹣1)nanbn}的前2n项和为常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设x∈R,y∈R,若复数(x2+y2-4)+(x-y)i是纯虚数,则点(x,y)的轨迹是( )
A. 以原点为圆心,以2为半径的圆
B. 两个点,其坐标为(2,2),(-2,-2)
C. 以原点为圆心,以2为半径的圆和过原点的一条直线
D. 以原点为圆心,以2为半径的圆,并且除去两点(,),(-,-)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三角形ABC的三边长为a、b、c,且其中任意两边长均不相等.若,,成等差数列.(1)比较与的大小,并证明你的结论;(2)求证B不可能是钝角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知斜率为k的直线l经过点(-1,0),且与抛物线C:y2=2px(p>0,p为常数)交于不同的两点M,N.当k=时,弦MN的长为.
(1)求抛物线C的标准方程.
(2)过点M的直线交抛物线于另一点Q,且直线MQ经过点B(1,-1),判断直线NQ是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com