【题目】如图,在四棱锥中, , , , .
(1)在平面内找一点,使得直线平面,并说明理由;
(2)证明:平面平面.
科目:高中数学 来源: 题型:
【题目】(14分)关于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)
(1)已知不等式的解集为(﹣∞,﹣1]∪[2,+∞),求a的值;
(2)解关于x的不等式ax2+(a﹣2)x﹣2≥0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=BC=AC=,则球的表面积为( )
A. 12π B. 8π C. 4π D. 3π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,且对任意正整数,满足.
(1)求数列的通项公式;
(2)若,数列的前项和为,是否存在正整数,使? 若存在,求出符合条件的所有的值构成的集合;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,函数.
(1)求的单调递增区间;
(2)设,问是否存在极值,若存在,请求出极值,若不存在,请说明理由;
(3)设是函数图象上任意不同的两点,线段的中点为,直线的斜率为,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆点, 是圆上任意一点,线段的垂直平分线和半径相交于点。
(Ⅰ)当点在圆上运动时,求点的轨迹方程;
(Ⅱ)直线与点的轨迹交于不同两点和,且(其中 O 为坐标
原点),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?
(1)甲得4本,乙得3本,丙得2本;
(2)一人得4本,一人得3本,一人得2本;
(3)甲、乙、丙各得3本.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com