精英家教网 > 高中数学 > 题目详情
(文科)如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M是棱A1B1的中点,N是棱A1D1的中点.
(1)求异面直线AN与BM所成的角;
(2)求三棱锥M-DBB1的体积.
分析:(1)棱B1C1的中点为G,连接BG、GM、GN,先利用平行公理证明ABGN为平行四边形,再利用异面直线所成的角的定义证明∠MBG是异面直线AN与BM所成的角,最后在三角形中计算此角即可;
(2)先利用线面垂直的判定定理证明MH⊥平面DBB1D1,从而MH为三棱锥M-DBB1的高,再利用三棱锥的体积计算公式计算其体积即可
解答:解:(1)记棱B1C1的中点为G,连接BG、GM、GN,GM与B1D1的交点为H,
连接BH,如图所示.
∵ABCD-A1B1C1D1是正方体,G、N是中点,
∴GN∥A1B1∥AB,GN=A1B1=AB,即ABGN为平行四边形.
∴BG∥AN,
∴∠MBG是异面直线AN与BM所成的角.
在三角形MBG中,BM=BG=
5
2
a
MG=
2
2
a

cos∠MBG=
(
5
2
a)
2
+(
5
2
a)
2
-(
2
2
a)
2
2
5
2
a•
5
2
a
=
4
5

异面直线AN与BM所成角为arccos
4
5

(2)∵B1H是等腰三角形MB1G的顶角平分线
∴BH⊥MH.
∵BB1⊥平面A1B1C1D1,MH?平面A1B1C1D1,∴BB1⊥MH.
∴MH⊥平面DBB1D1,即MH为三棱锥M-DBB1的高.
VM-DBB1=
1
3
1
2
•DB•BB1•MH
=
1
6
2
a•a•
2
4
a
=
1
12
a3
点评:本题主要考查了异面直线所成的角的定义及其作法、证法、算法,椎体的体积计算公式及其应用,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(理科)某中学号召学生在2010年春节期间至少参加一次社会公益活动(下面简称为“活动”).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(Ⅰ)求合唱团学生参加活动的人均次数;
(Ⅱ)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率.

(文科)先后抛掷一枚骰子两次,得到点数m,n,确定函数f(x)=x2+mx+n2,设函数f(x)有零点为事件A.
(Ⅰ)求事件A的概率P(A);
(Ⅱ)设函数g(x)=x2+12P(A)x-4的定义域为[-5,5],记“当x0∈[-5,5]时,则g(x0)≥0”为事件B,求事件B的概率P(B).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)某中学号召学生在2010年春节期间至少参加一次社会公益活动(下面简称为“活动”).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(I)求合唱团学生参加活动的人均次数;
(II)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率.

(文科)先后抛掷一枚骰子两次,得到点数m,n,确定函数f(x)=x2+mx+n2,设函数f(x)有零点为事件A.
(I)求事件A的概率P(A);
(II)设函数g(x)=x2+12P(A)x-4的定义域为[-5,5],记“当x0∈[-5,5]时,则g(x0)≥0”为事件B,求事件B的概率P(B).

查看答案和解析>>

科目:高中数学 来源:2012年上海市财大附中高三4月检测数学试卷(解析版) 题型:解答题

(文科)如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M是棱A1B1的中点,N是棱A1D1的中点.
(1)求异面直线AN与BM所成的角;
(2)求三棱锥M-DBB1的体积.

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省锦州市高考数学三模试卷(解析版) 题型:解答题

(理科)某中学号召学生在2010年春节期间至少参加一次社会公益活动(下面简称为“活动”).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(I)求合唱团学生参加活动的人均次数;
(II)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率.

(文科)先后抛掷一枚骰子两次,得到点数m,n,确定函数f(x)=x2+mx+n2,设函数f(x)有零点为事件A.
(I)求事件A的概率P(A);
(II)设函数g(x)=x2+12P(A)x-4的定义域为[-5,5],记“当x∈[-5,5]时,则g(x)≥0”为事件B,求事件B的概率P(B).

查看答案和解析>>

同步练习册答案