精英家教网 > 高中数学 > 题目详情

【题目】我们把定义在上,且满足(其中常数满足)的函数叫做似周期函数.

1)若某个似周期函数满足且图象关于直线对称,求证:函数是偶函数;

2)当时,某个似周期函数在时的解析式为,求函数的解析式;

3)对于(2)中的函数,若对任意,都有,求实数的取值范围.

【答案】1)证明见解析;(2;(3.

【解析】

1)利用似周期函数的性质、图像关于直线对称,结合函数奇偶性的定义,证得,由此证得是偶函数.

2)利用迭代的方法,求得的解析式.

3)根据(2)中求得的解析式,画出图像和的图像,确定的大致区间,令,求得对应的值,由此确定的取值范围.

1)依题意可知,函数的定义域为,关于原点对称.由于图像关于对称,故.,即②,用代替.由①②③可知,而,所以,故函数为偶函数.

2)由于,所以,得.

时,

时,

时,

时,

……

以此类推,当时,.

同理,由于,所以,得.

时,

时,

……

以此类推,当时,.

综上所述,当时,

3)由(2)画出的图像、函数图像如下图所示.由图可知,从左往右,从开始,图像有交点.由(2)知,当时, ;令,解得.结合图像可知,要使对任意,都有,则.的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,EF分别为AB的三等分点,,若沿着FGED折叠使得点AB重合,如图2所示,连结GCBD.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)对任意的恒成立,请求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距与短轴长相等,长轴长为,设过右焦点F倾斜角为的直线交椭圆MAB两点.

(1)求椭圆M的方程;

(2)求证:

(3)设过右焦点F且与直线AB垂直的直线交椭圆MCD,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,侧棱底面 且点分别为的中点.

1)求证: 平面

2求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,下顶点为B,过AOBO为坐标原点)三点的圆的圆心坐标为

(1)求椭圆的方程;

(2)已知点Mx轴正半轴上,过点BBM的垂线与椭圆交于另一点N,若∠BMN=60°,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,设,若对所有的都有,则称互为零点相邻函数”.若函数互为零点相邻函数,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,侧棱与底面垂直的四棱柱ABCDA1B1C1D1的底面是梯形,ABCDABADAA14DC2ABABAD3,点M在棱A1B1上,且A1MA1B1.已知点E是直线CD上的一点,AM∥平面BC1E.

(1)试确定点E的位置,并说明理由;

(2)求三棱锥M-BC1E的体积.

查看答案和解析>>

同步练习册答案