【题目】我们把定义在上,且满足(其中常数、满足,,)的函数叫做似周期函数.
(1)若某个似周期函数满足且图象关于直线对称,求证:函数是偶函数;
(2)当,时,某个似周期函数在时的解析式为,求函数,,的解析式;
(3)对于(2)中的函数,若对任意,都有,求实数的取值范围.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)利用似周期函数的性质、图像关于直线对称,结合函数奇偶性的定义,证得,由此证得是偶函数.
(2)利用迭代的方法,求得,,的解析式.
(3)根据(2)中求得的解析式,画出图像和的图像,确定的大致区间,令,求得对应的值,由此确定的取值范围.
(1)依题意可知,函数的定义域为,关于原点对称.由于图像关于对称,故①.又,即②,用代替得③.由①②③可知,而,,所以,故函数为偶函数.
(2)由于,,所以,得.
当时,;
当时,,;
当时,,;
当时,,;
……
以此类推,当时,.
同理,由于,,所以,得.
当时,,;
当时,,;
……
以此类推,当时,.
综上所述,当,时,
(3)由(2)画出的图像、函数图像如下图所示.由图可知,从左往右,从开始,与图像有交点.由(2)知,当时, ;令,解得或.结合图像可知,要使对任意,都有,则.故的取值范围是
科目:高中数学 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形ABCD中,E,F分别为AB的三等分点,,若沿着FG,ED折叠使得点A和B重合,如图2所示,连结GC,BD.
(1)求证:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距与短轴长相等,长轴长为,设过右焦点F倾斜角为的直线交椭圆M于A、B两点.
(1)求椭圆M的方程;
(2)求证:
(3)设过右焦点F且与直线AB垂直的直线交椭圆M于C、D,求四边形ABCD面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右顶点为A,下顶点为B,过A、O、B(O为坐标原点)三点的圆的圆心坐标为.
(1)求椭圆的方程;
(2)已知点M在x轴正半轴上,过点B作BM的垂线与椭圆交于另一点N,若∠BMN=60°,求点M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,侧棱与底面垂直的四棱柱ABCD,A1B1C1D1的底面是梯形,AB∥CD,AB⊥AD,AA1=4,DC=2AB,AB=AD=3,点M在棱A1B1上,且A1M=A1B1.已知点E是直线CD上的一点,AM∥平面BC1E.
(1)试确定点E的位置,并说明理由;
(2)求三棱锥M-BC1E的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com