精英家教网 > 高中数学 > 题目详情

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,1]时,f(x)=x2
(1)求证:2是函数f(x)的一个周期;
(2)求f(x)在区间[2k-1,2k+1],k∈Z上的函数解析式;
(3)是否存在整数k,使数学公式对任意x∈[2k-1,2k+1]恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.

解:(1)因为f(x+2)=f[(x+1)+1]=-f(x+1)=-[-f(x)]=f(x)
所以:2是函数f(x)的一个周期(2分)
(2)∵f(x)是以2为周期的函数,即f(x-2k)=f(x),k∈Z
设x∈[2k-1,2k+1],则x-2k∈[-1,1]∴f(x-2k)=(x-2k)2
即f(x)=(x-2k)2,x∈[2k-1,2k+1](k∈Z)(6分)
(3)当x∈[2k-1,2k+1]时,
①当k≥1时,则2k-1≥1,∴x>0
∴原题等价于x2-2kx+4k2-9>0对任意x∈[2k-1,2k+1]恒成立.
设g(x)=x2-2kx+4k2-9
当k≥1时,对称轴x=k≤2k-1
则g(2k-1)=4k2-2k-8≥0,
解得∴整数k≥2(10分)
②当k≤-1时,则2k+1≤-1,∴x<0,
∴原题等价于x2-2kx+4k2-9<0对任意x∈[2k-1,2k+1]恒成立,
设g(x)=x2-2kx+4k2-9
当k≤-1时,对称轴x=k≥2k+1
则g(2k-1)=4k2-2k-8>0,
解得∴整数k=-1(14分)
③当k=0时,原命题等价于对任意x∈[-1,1]恒成立
当x=1时,则-8>0显然不成立∴k≠0(15分)
综上所述,所求k的取值范围是[2,+∞)∪-1.(16分)
分析:(1)因为f(x+2)=f[(x+1)+1]=-f(x+1)=-[-f(x)]=f(x)可得结论.
(2)设x∈[2k-1,2k+1],则x-2k∈[-1,1]∵f(x)是以2为周期的函数,即f(x-2k)=f(x)可求解.
(3)当x∈[2k-1,2k+1]时,恒成立,再用二次函数法求解.
点评:本题主要考查函数的周期性及用周期性求函数解析式,这类问题要注意转化自变量所在区间是关键.还考查了恒成立问题,要通过函数类型来求最值解决,本题用的是二次函数法,对称轴与区间的相对位置,即研究了单调性,也明确了自变量的正负,题目设计可谓巧妙.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)是最小正周期为π的周期函数,且当x∈[0,
π
2
]
时,f(x)=sinx,则f(
3
)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、定义在R上的偶函数f(x),当x≥0时有f(2+x)=f(x),且x∈[0,2)时,f(x)=2x-1,则f(2010)+f(-2011)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),满足f(x+2)=f(x),且f(x)在[-3,-2]上是减函数,若α、β是锐角三角形中两个不相等的锐角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;
②f(x)的图象关于x=l对称;
③f(x)在[l,2l上是减函数;
④f(2)=f(0),
其中正确命题的序号是
①②④
①②④
.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在R上的偶函数f(x).当x≥0时,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函数f(x)的解析式并画出函数的图象;
(Ⅱ)写出函数f(x)的值域.

查看答案和解析>>

同步练习册答案