精英家教网 > 高中数学 > 题目详情
6.函数f(x)=xm(1-x)n在区间[0,1]上的图象如图所示,则m,n的值为(  )
A.m=1,n=1B.m=1,n=2C.m=2,n=1D.m=2,n=2

分析 利用函数的图象,原函数的极大值点小于0.5.把答案代入验证看哪个对应的极值点符合要求即可得出答案.

解答 解:由于本题是选择题,可以用代入验证法来解答,
由图得,原函数的极大值点小于0.5.
当m=1,n=1时,f(x)=x(1-x)=x-x2.是二次函数在x=$\frac{1}{2}$处有最值,故A错误;
当m=1,n=2时,f(x)=xm(1-x)n=x(1-x)2=x3-2x2+x,所以f′(x)=(3x-1)(x-1),令f′(x)=0⇒x=$\frac{1}{3}$,x=1,即函数在x=$\frac{1}{3}$处有最值,故B正确;
当m=2,n=1时,f(x)=xm(1-x)n=x2(1-x)=x2-x3,有f'(x)=2x-3x2=x(2-3x),令f′(x)=0⇒x=0,x=$\frac{2}{3}$,即函数在x=$\frac{2}{3}$处有最值,故C错误;
当m=3,n=1时,f(x)=xm(1-x)n=x3(1-x)=x3-x4,有f′(x)=x2(3-4x),令f′(x)=0,⇒x=0,x=$\frac{3}{4}$,即函数在x=$\frac{3}{4}$处有最值,故D错误.
故选:B.

点评 本题主要考查函数的最值(极值)点与导函数之间的关系.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.本本题考查利用极值求对应变量的值.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,已知正方体ABCD-A1B1C1D1,E,F,G,H分别是AD1、CD1、BC、AB的中点.
(Ⅰ)求证:E,F,G,H四点共面;
(Ⅱ)求证:GH⊥B1D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.方程:22x+1-2x-3=0的解为$lo{g}_{2}\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a≥2,函数F(x)=min{x3-x,a(x+1)},其中min{p,q}=$\left\{\begin{array}{l}{p,p≤q}\\{q,p>q}\end{array}\right.$.
(1)若a=2,求F(x)的单调递减区间;
(2)求函数F(x)在[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若偶函数f(x)满足f(x+π)=f(x),且f(-$\frac{π}{3}$)=$\frac{1}{2}$,则f($\frac{2017π}{3}$)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\frac{1}{\sqrt{1-x}}$的定义域为(  )
A.(0,1]B.(-∞,1)C.(-∞,1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算($\frac{125}{27}$)${\;}^{-\frac{1}{3}}$+lg$\frac{1}{4}$-lg25=-$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A、B、C所对的边分别为a、b、c,B=60°,b=$\sqrt{13}$.
(1)若3sinC=4sinA,求c的值;
(2)求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\left\{\begin{array}{l}-2x,x<0\\-{x^2}+2x,x≥0\end{array}\right.$若关于x的方程$f(x)=\frac{1}{2}x+m$恰有三个不相等的实数解,则m的取值范围是$(0,\frac{9}{16})$.

查看答案和解析>>

同步练习册答案