精英家教网 > 高中数学 > 题目详情
已知平面上的动点P(x,y)及两个定点A(-2,0),B(2,0),直线PA,PB的斜率分别为K1,K2且K1K2=-
(1).求动点P的轨迹C方程;
(2).设直线L:y=kx+m与曲线C交于不同两点,M,N,当OM⊥ON时,求O点到直线L的距离(O为坐标原点)
(1);(2).

试题分析:本题主要考查椭圆的方程、直线与椭圆的位置关系、向量的运算、点到直线的距离公式等基础知识,意在考查考生的运算求解能力、推理论证能力以及利用解析法、函数与方程思想的解题能力.第一问,利用P、A、B点的坐标,先求出代入到中整理出x,y的关系,即点P的轨迹方程;第二问,设出M、N坐标,令直线与椭圆方程联立,消参得到关于x的方程,由于交于M、N两个点,所以,利用韦达定理,得,由,利用向量的垂直的充要条件得到的关系式,利用点到直线的距离公式,利用上述的关系式得到数值.
试题解析:(1)设,由已知得
整理得,即   4分
(2)设M
消去得:

   8分



满足   10分
点到的距离为
   12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆C1的右焦点为F,P为椭圆上的一个动点.
(1)求线段PF的中点M的轨迹C2的方程;
(2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,设曲线C1所围成的封闭图形的面积为,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.Ml上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若Ml与椭圆C2的交点,求△AMB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆()的短轴长为2,离心率为.过点M(2,0)的直线与椭圆相交于两点,为坐标原点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若点关于轴的对称点是,证明:直线恒过一定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1,F2分别是椭圆的左,右焦点,过F1的直线L与椭圆相交于A,B两点,|AB|=,直线L的斜率为1,则b的值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为(  )
A.B.C.±D.±

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的右焦点作相互垂直的两条弦,若 的最小值为,则椭圆的离心率(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在椭圆中,左焦点为, 右顶点为, 短轴上方端点为,若,则该椭圆的离心率为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆+y2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案