精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)在区间[a,b]上均有意义,且A、B是其图象上横坐标分别为a、b的两点.对应于区间[0,1]内的实数λ,取函数y=f(x)的图象上横坐标为x=λa+(1-λ)b的点M,和坐标平面上满足的点N,得.对于实数k,如果不等式|MN|≤k对λ∈[0,1]恒成立,那么就称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x2+x在[1,2]上“k阶线性近似”,则实数k的取值范围为( )
A.
B.[0,+∞)
C.
D.
【答案】分析:先得出M、N横坐标相等,将恒成立问题转化为求函数的最值问题.
解答:解:由题意,M、N横坐标相等,不等式|MN|≤k对λ∈[0,1]恒成立,则k≥|MN|的最大值.
由A、B是其图象上横坐标分别为a、b的两点,则A(1,2),(2,6)
∴AB方程为y-6=×(x-2),即y=4x-2
由图象可知,|MN|=4x-2-(x2+x)=-(x-2+
∴k≥
故选C.
点评:本题考查新定义,解答的关键是将已知条件进行转化,同时应注意恒成立问题的处理策略.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案