精英家教网 > 高中数学 > 题目详情

【题目】如图,双曲线的中心在坐标原点,焦点在轴上,为双曲线的顶点,为双曲线虚轴的端点,为右焦点,延长交于点,若是锐角,则该双曲线的离心率的取值范围是( )

A. B. C. D.

【答案】D

【解析】试题分析:根据∠B1PB2夹角,并分别表示出,由∠B1PB2为钝角,.<0,得ac﹣b2<0,利用椭圆的性质,可得到e2-e﹣1>0,即可解得离心率的取值范围.

详解:

如图所示,∠B1PB2的夹角;

设椭圆的长半轴、短半轴、半焦距分别为a,b,c,

=(a,b),=(c,﹣b),

向量的夹角为钝角时,.<0,

∴ac﹣b2<0,

b2=-a2+c2

∴a2+ac-c2>0;

两边除以a2e2-e﹣1>0,

解得e的范围为

∵1<e<

∴1<e<

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若只有一个零点,求

(2)当时,对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某实验室一天的温度(单位:)随时间(单位:)的变化近似满足函数关系:.

(Ⅰ)求实验室这一天的最大温差;

(Ⅱ)若要求实验室温度不高于,则在哪段时间实验室需要降温?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一个负数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ab是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(logab+logba)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是底面边长为1的正三棱锥,分别为棱长上的点,截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)证明:为正四面体;

(2)若,求二面角的大小;(结果用反三角函数值表示)

(3)设棱台的体积为,是否存在体积为且各棱长均相等的直平行六面体,使得它与棱台有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥的体积减去棱锥的体积.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

(1)写出图(1)表示的市场售价与时间的函数关系式写出图(2)表示的种植成本与时间的函数关系式

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)若不等式对任意的正实数都成立,求实数的最大整数;

(3)当时,若存在实数使得求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】节能减排以来,兰州市100户居民的月平均用电量单位:度,以分组的频率分布直方图如图.

求直方图中x的值;求月平均用电量的众数和中位数;

估计用电量落在中的概率是多少?

查看答案和解析>>

同步练习册答案