精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ln(1+x)﹣x,g(x)=xlnx.
(1)求函数f(x)的最大值;
(2)设0<a<b,证明0<g(a)+g(b)﹣2g( )<(b﹣a)ln2.

【答案】
(1)解:函数f(x)的定义域为(﹣1,+∞).

.令f′(x)=0,解得x=0.

当﹣1<x<0时,f′(x)>0,当x>0时,f′(x)<0.又f(0)=0,

故当且仅当x=0时,f(x)取得最大值,最大值为0.


(2)证明:

=

由(Ⅰ)结论知ln(1+x)﹣x<0(x>﹣1,且x≠0),

由题设

因此ln =﹣ln(1+ )>﹣

所以

.=(b﹣a)ln <(b﹣a)ln2

综上


【解析】(1)先求出函数的定义域,然后对函数进行求导运算,令导函数等于0求出x的值,再判断函数的单调性,进而可求出最大值.(2)先将a,b代入函数g(x)得到g(a)+g(b)﹣2g( )的表达式后进行整理,根据(1)可得到lnx<x,将 放缩变形为 代入即可得到左边不等式成立,再用 根据y=lnx的单调性进行放缩 .然后整理即可证明不等式右边成立.
【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,我市某居民小区拟在边长为1百米的正方形地块ABCD上划出一个三角形地块APQ种植草坪,两个三角形地块PAB与QAD种植花卉,一个三角形地块CPQ设计成水景喷泉,四周铺设小路供居民平时休闲散步,点P在边BC上,点Q在边CD上,记∠PAB=a.
(1)当∠PAQ= 时,求花卉种植面积S关于a的函数表达式,并求S的最小值;
(2)考虑到小区道路的整体规划,要求PB+DQ=PQ,请探究∠PAQ是否为定值,若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点.求:
(1)当|OA|十|OB|取得最小值时,直线l的方程;
(2)当|MA|2+|MB|2取得最小值时,直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数f(x)与g(x)的图象相同的是(
A.f(x)=x,g(x)=( 2
B.f(x)=x2 , g(x)=(x+1)2
C.f(x)=1,g(x)=x0
D.f(x)=|x|,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2 , 则y=f(x)与y=log5x的图象的交点个数为(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x2﹣6x+5≤0,q:x2﹣2x+1﹣m2≤0(m>0).
(1)若m=2,且p∧q为真,求实数x的取值范围;
(2)若p是q充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设y=f(x)是定义在R上的偶函数,且f(1+x)=f(1﹣x),当0≤x≤1时,f(x)=2x , 则f(3)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆E:(x+ 2+y2=16,点F( ,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.

(1)求动点Q的轨迹Γ的方程;
(2)设直线l与(1)中轨迹Γ相交于A,B两点,直线AO,l,OB的斜率分别为k1 , k,k2(其中k>0),若k1 , k,k2恰好构成公比不为1的等比数列,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将所得的数据整理后,画频率分布直方图.已知图中横轴从左向右的分组为[50,75)、[75,100)、[100,125)、[125,150],纵轴前3个对应值分别为0.004、0.01、0.02,因失误第4个对应值丢失.
(Ⅰ) 已知第1小组频数为10,求参加这次测试的人数?
(Ⅱ) 求第4小组在y轴上的对应值;
(Ⅲ) 若次数在75次以上 ( 含75次 ) 为达标,试估计该年级跳绳测试达标率是多少?
(Ⅳ) 试估计这些数据的中位数.

查看答案和解析>>

同步练习册答案