精英家教网 > 高中数学 > 题目详情

已知函数时,都取得极值.
(1)求的值;
(2)若,求的单调区间和极值;
(3)若对都有恒成立,求的取值范围.

(1);(2)f (x)的递增区间为(-∞,-),及(1,+∞),递减区间为(-,1),当x=-时,f (x)有极大值,f (-)=;当x=1时,f (x)有极小值,f (1)=-;(3)

解析试题分析:(1)函数的极值点是使导数等于0的的值,因此本题中一定有,由此可解出的值;(2)再由可求出,而求单调区间,很显然是解不等式(得增区间)或(得减区间),然后可得相应的极大值和极小值;(3)不等式恒成立,实际上就是当的最大值小于,因此问题转化为先求上的最大值,然后再解不等式即可.
试题解析:(1)f ′(x)=3x2+2a x+b=0.
由题设,x=1,x=-为f ′(x)=0的解.
a=1-=1×(-).∴a=-,b=-2       3分
经检验得:这时都是极值点.      …4分
(2)f (x)=x3x2-2 x+c,由f (-1)=-1-+2+c=,c=1.
∴f (x)=x3x2-2 x+1.

∴f(x)的递增区间为(-∞,-),及(1,+∞),递减区间为(-,1).
当x=-时,f (x)有极大值,f (-)=
当x=1时,f (x)有极小值,f (1)=-        …8分
(3)由(1)得,f′(x)=(x-1)(3x+2),f (x)=x3x2-2 x+c,
f (x)在[-1,-及(1,2]上递增,在(-,1)递减.
而f (-)=-+c=c+.f (2)=8-2-4+c=c+2.
∴  f (x)在[-1,2]上的最大值为c+2.∴ ,∴ 
 或∴    12分
考点:(1)导数与极值;(2)导数与单调区间;(3)不等式恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,若时,有极小值
(1)求实数的取值;
(2)若数列中,,求证:数列的前项和
(3)设函数,若有极值且极值为,则是否具有确定的大小关系?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数的极值,并指出是极大值还是极小值;
(Ⅱ)若,求证:在区间上,函数的图像在函数的图像的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)研究函数的极值点;
(2)当时,若对任意的,恒有,求的取值范围;
(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1)当时,求的单调区间;
(2)若当恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为元,则销售量(单位:件)与零售价(单位:元)有如下关系:,问该商品零售价定为多少元时毛利润最大,并求出最大毛利润.(毛利润销售收入进货支出)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设,证明:对任意,总存在,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数上的最小值;
(2)对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底,
(1)求的最值;
(2)若关于方程有两个不同解,求的范围.

查看答案和解析>>

同步练习册答案