精英家教网 > 高中数学 > 题目详情

【题目】若抛物线y2=2px(p>0)上一点到焦点和抛物线对称轴的距离分别为10和6,则抛物线方程为(
A.y2=4x
B.y2=36x
C.y2=4x或y2=36x
D.y2=8x或y2=32x

【答案】C
【解析】解:∵抛物线y2=2px(p>0)上一点到的对称轴的距离6,

∴设该点为P,则P的坐标为(x0,±6)

∵P到抛物线的焦点F( ,0)的距离为10

∴由抛物线的定义,得x0+ =10…(1)

∵点P是抛物线上的点,

∴2px0=36…(2)

由(1)(2)联立,解得p=2,x0=2或p=18,x0=1

则抛物线方程为y2=4x或y2=36x.

故选:C.

由抛物线上点P到的对称轴的距离6,设P的坐标为(x0,±6).根据点P坐标适合抛物线方程及点P到焦点的距离为10,联列方程组,解之可得p与x0的值,从而得到本题的答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】生产某种产品的年固定成本为250万元,每生产x千件,需要另投入成本为C(x),当年产量不足80千件时,C(x)= +20x(万元),当年产量不小于80千件时,C(x)=51x+ ﹣1450(万元),通过市场分析,每件商品售价为0.05万元时,该商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式(利润=销售额﹣成本);
(2)年产量为多少千件时,生产该商品获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数==

(1)求函数的单调递增区间;(只需写出结论即可)

(2)设函数= ,若在区间上有两个不同的零点,求实数的取值范围;

(3)若存在实数,使得对于任意的,都有成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(x)cos(x),g(x)=sin 2x.

(1)求函数f(x)的最小正周期;

(2)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆x2+y2=2的切线l与轴的正半轴、轴的正半轴分别交于点A、B,当|AB|取最小值时,切线l的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE= CD=2,M是线段AE上的动点.
(Ⅰ)试确定点M的位置,使AC∥平面MDF,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面MDF将几何体ADE﹣BCF分成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了50名女性和50名男性,根据调研结果得到如图所示的等高条形图
(1)完成下列2×2列联表:

喜欢旅游

不喜欢旅游

合计

女性

男性

合计


(2)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关” 附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对正整数n,记In={1,2,3,...,n},Pn={|m∈In,k∈In}.

(1)求集合P7中元素的个数;

(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.

查看答案和解析>>

同步练习册答案