精英家教网 > 高中数学 > 题目详情

已知y=f(x)的反函数是y=f-1(x),若方程f(x)+x-1=0与f-1(x)+x-1=0的实数解分别为α,β,则α+β=


  1. A.
    1
  2. B.
    2
  3. C.
    -1
  4. D.
    -2
A
分析:将原方程f(x)+x-1=0化成:f(x)=1-x,f-1(x)+x-1=0化成:f-1(x)=1-x,再分别画出式子两边对应的函数图象,将原方程的解转化成图象的交点问题,再结合互为反函数的两个函数的图象的对称关系,得出α,β的中点的横坐标是直线y=x与y=1-x交点的横坐标,,最后利用中点坐标公式即可求得结果.
解答:解:方程f(x)+x-1=0化成:f(x)=1-x,
f-1(x)+x-1=0化成:f-1(x)=1-x,
分别画出函数y=f(x),y=f-1(x),y=1-x的图象,如图.
原方程的根看成是图象的交点的横坐标,
由于函数y=f(x),y=f-1(x)的图关于直线 y=x对称,
∴α,β的中点的横坐标是直线y=x与y=1-x交点的横坐标,
直线y=x与y=1-x交点的横坐标是:
由中点坐标公式得:α+β=1.
故选A.
点评:本题主要考查互为反函数的两个函数的图象的对称关系,考查了数形结合的思想,函数与方程思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),若对于任意n?N*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=
px+1
x+1
确定数列{an}的自反数列为{bn},求an
(2)在(1)条件下,记
n
1
x1
+
1
x2
+…
1
xn
为正数数列{xn}的调和平均数,若dn=
2
an+1
-1
,Sn为数列{dn}的前n项之和,Hn为数列{Sn}的调和平均数,求
lim
n→∞
=
Hn
n

(3)已知正数数列{cn}的前n项之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•宝山区二模)已知f(x)=
10x+a10x+1
是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

查看答案和解析>>

科目:高中数学 来源:2010年上海市吴淞中学高三上学期期中考试数学卷 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y="f" -1(x)能确定数列{bn},bn=" f" –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=确定数列{an}的自反数列为{bn},求an
(2)已知正数数列{cn}的前n项之和Sn=(cn+).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项之和,且Dn>log a (1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年上海市高三上学期期中考试数学卷 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f -1(x)能确定数列{bn},bn= f –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.

   (1)若函数f(x)=确定数列{an}的自反数列为{bn},求an

   (2)已知正数数列{cn}的前n项之和Sn=(cn+).写出Sn表达式,并证明你的结论;

   (3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项之和,且Dn>log a (1-2a)恒成立,求a的取值范围.

 

查看答案和解析>>

同步练习册答案