精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;
(3)若点M的横坐标为 ,直线l:y=kx+ 与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当 ≤k≤2时,|AB|2+|DE|2的最小值.

【答案】
(1)解:由题意可知F(0, ),圆心Q在线段OF平分线y= 上,

因为抛物线C的标准方程为y=﹣

所以 ,即p=1,

因此抛物线C的方程x2=2y.


(2)解:假设存在点M(x0 ),(x0>0)满足条件,

抛物线C在点M处的切线的斜率为

y′ = =x0

令y= 得,

所以Q( ),

又|QM|=|OQ|,

因此 .又x0>0.

所以x0= ,此时M( ).

故存在点M( ),使得直线MQ与抛物线C相切与点M.


(3)解:当x0= 时,由(Ⅱ)的Q( ),⊙Q的半径为:r= =

所以⊙Q的方程为

,整理得2x2﹣4kx﹣1=0.

设A(x1,y1),B(x2,y2),由于△=16k2+8>0,x1+x2=2k,x1x2=﹣

所以|AB|2=(1+k2)[(x1+x22﹣4x1x2]=(1+k2)(4k2+2).

,整理得(1+k2)x2

设D,E两点的坐标分别为(x3,y3),(x4,y4),

由于△= >0,x3+x4= ,x3x4=

所以|DE|2=(1+k2)[(x3+x42﹣4x3x4]=

因此|AB|2+|DE|2=(1+k2)(4k2+2)+

令1+k2=t,由于△=16k2+8>0

≤k≤2,∴t≥

所以|AB|2+|DE|2=t(4t﹣2)+ =4t2﹣2t+

设g(t)=4t2﹣2t+ ,t ,因为g′(t)=8t﹣2﹣

所以当t ,g′(t)≥g′( )=6,

即函数g(t)在t 是增函数,所以当t= 时,g(t)取最小值

因此当k= 时,|AB|2+|DE|2的最小值为


【解析】(1)通过F(0, ),圆心Q在线段OF平分线y= 上,推出求出p=1,推出抛物线C的方程.(2)假设存在点M(x0 ),(x0>0)满足条件,抛物线C在点M处的切线的斜率为函数的导数,求出Q的坐标,利用|QM|=|OQ|,求出M( ).使得直线MQ与抛物线C相切与点M.(3)当x0= 时,求出⊙Q的方程为.利用直线与抛物线方程联立方程组.设A(x1 , y1),B(x2 , y2),利用韦达定理,求出|AB|2 . 同理求出|DE|2 , 通过|AB|2+|DE|2的表达式,通过换元,利用导数求出函数的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,既是奇函数又是增函数的为(
A.y=x+1
B.y=﹣x2
C.y=
D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.

(1)求曲线C的轨迹方程

(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)x2g(x)x1.

(1)若存在xR使f(x)<b·g(x),求实数b的取值范围;

(2)F(x)f(x)mg(x)1mm2,且|F(x)|上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a3+a4+a5=84,a9=73.
(1)求数列{an}的通项公式;
(2)对任意m∈N* , 将数列{an}中落入区间(9m , 92m)内的项的个数记为bm , 求数列{bm}的前m项和Sm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合集合,集合,且集合D满足.

(1)求实数a的值.

(2)对集合,其中,定义由中的元素构成两个相应的集合:,,其中是有序实数对,集合ST中的元素个数分别为,若对任意的,总有,则称集合具有性质P.

①请检验集合是否具有性质P并对其中具有性质P的集合,写出相应的集合ST.

②试判断mn的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】p:实数x满足x2-5ax+4a2<0(其中a>0),q:实数x满足2<x≤5.

(1)若a=1,且pq为真,求实数x的取值范围;

(2)若qp的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y=(x+1)2与圆 (r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(1)求r;
(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(Ⅰ)写出曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)已知点,曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

同步练习册答案