【题目】某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利?
(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.
【答案】
(1)解:y=﹣2x2+40x﹣98,x∈N*
(2)解:由﹣2x2+40x﹣98>0解得, ,且x∈N*,
所以x=3,4,,17,故从第三年开始盈利
(3)解:由 ,当且仅当x=7时“=”号成立,
所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).
由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,
所以按第二方案处理总利润为102+12=114(万元).
∴由于第一方案使用时间短,则选第一方案较合理
【解析】(1)赢利总额y元即x年中的收入50x减去购进机床的成本与这x年中维修、保养的费用,维修、保养的费用历年成等差数增长,(2)由(1)的结论解出结果进行判断得出何年开始赢利.(3)算出每一种方案的总盈利,比较大小选择方案.
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=mx2﹣2x﹣3,关于实数x的不等式f(x)≤0的解集为(﹣1,n)
(1)当a>0时,解关于x的不等式:ax2+n+1>(m+1)x+2ax;
(2)是否存在实数a∈(0,1),使得关于x的函数y=f(ax)﹣3ax+1(x∈[1,2])的最小值为﹣5?若存在,求实数a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国“一带一路”战略构思提出后, 某科技企业为抓住“一带一路”带来的机遇, 决定开发生产一款大型电子设备, 生产这种设备的年固定成本为万元, 每生产台,需另投入成本(万元), 当年产量不足台时, (万元); 当年产量不小于台时 (万元), 若每台设备售价为万元, 通过市场分析,该企业生产的电子设备能全部售完.
(1)求年利润 (万元)关于年产量(台)的函数关系式;
(2)年产量为多少台时 ,该企业在这一电子设备的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且b=,cosAsinB+(c﹣sinA)cos(A+C)=0.
(1)求角B的大小;
(2)若△ABC的面积为,求sinA+sinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项为和Sn , 点(n, )在直线y= x+ 上.数列{bn}满足bn+2﹣2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(1)求数列{an},{bn}的通项公式;
(2)求数列 的前n项和Tn
(3)设n∈N* , f(n)= 问是否存在m∈N* , 使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:
(1)3个矩形颜色都相同的概率;
(2)3个矩形颜色都不同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为.
(Ⅰ)求比赛三局甲获胜的概率;
(Ⅱ)求甲获胜的概率;
(Ⅲ)设甲比赛的次数为,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①经过定点P0(x0 , y0)的直线都可以用方程y﹣y0=k(x﹣x0)表示;
②经过定点A(0,b)的直线都可以用方程y=kx+b表示;
③不经过原点的直线都可以用方程 + =1表示;
④经过任意两个不同的 点P1(x1 , y1)、P2(x2 , y2)的直线都可以用方程(y﹣y1)(x2﹣x1)=(x﹣x1)(y2﹣y1)表示;
其中真命题的个数为( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com