精英家教网 > 高中数学 > 题目详情
3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,上顶点A到右焦点F2的距离为$\sqrt{3}$,椭圆C的离心率为$\frac{\sqrt{6}}{3}$,过F2的直线l与椭圆C交于M,N两点.
(1)求椭圆的方程;
(2)探究:当△MF1N的内切圆的面积最大时,直线l的倾斜角是多少.

分析 (1)由于上顶点A到右焦点F2的距离为$\sqrt{3}$,椭圆C的离心率为$\frac{\sqrt{6}}{3}$,可得$\left\{\begin{array}{l}{a=\sqrt{3}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解出即可得出;
(2)设直线l的方程为my+$\sqrt{2}$=x,M(x1,y1),N(x2,y2).与椭圆方程联立化为(m2+3)y2+2$\sqrt{2}$my-1=0,利用根与系数的关系可得:|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$.可得${S}_{△M{F}_{1}N}$=$\frac{1}{2}|{F}_{1}{F}_{2}||{y}_{1}-{y}_{2}|$,另一个方面:${S}_{△M{F}_{1}N}$=$\frac{1}{2}r(|M{F}_{1}|+|N{F}_{1}|+|MN|)$=2ar=2$\sqrt{3}$r(r为△MF1N的内切圆的半径),即可用m表示r,再利用基本不等式的性质即可得出.

解答 解:(1)∵上顶点A到右焦点F2的距离为$\sqrt{3}$,椭圆C的离心率为$\frac{\sqrt{6}}{3}$,∴$\left\{\begin{array}{l}{a=\sqrt{3}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=$\sqrt{3}$,b=1,c=$\sqrt{2}$,
∴椭圆的标准方程为:$\frac{{x}^{2}}{3}+{y}^{2}$=1.
(2)设直线l的方程为my+$\sqrt{2}$=x,M(x1,y1),N(x2,y2).
联立$\left\{\begin{array}{l}{my+\sqrt{2}=x}\\{{x}^{2}+3{y}^{2}=3}\end{array}\right.$,化为(m2+3)y2+2$\sqrt{2}$my-1=0,
∴y1+y2=$\frac{-2\sqrt{2}m}{{m}^{2}+3}$,y1y2=$\frac{-1}{{m}^{2}+3}$.
∴|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{2\sqrt{3{m}^{2}+3}}{{m}^{2}+3}$.
∴${S}_{△M{F}_{1}N}$=$\frac{1}{2}|{F}_{1}{F}_{2}||{y}_{1}-{y}_{2}|$=$\frac{1}{2}×2c×$$\frac{2\sqrt{3{m}^{2}+3}}{{m}^{2}+3}$=$\frac{2\sqrt{2}\sqrt{3{m}^{2}+3}}{{m}^{2}+3}$,
另一个方面:${S}_{△M{F}_{1}N}$=$\frac{1}{2}r(|M{F}_{1}|+|N{F}_{1}|+|MN|)$=2ar=2$\sqrt{3}$r(r为△MF1N的内切圆的半径).
∴2$\sqrt{3}$r=$\frac{2\sqrt{2}\sqrt{3{m}^{2}+3}}{{m}^{2}+3}$,
∴r=$\frac{\sqrt{2}\sqrt{{m}^{2}+1}}{{m}^{2}+3}$,∴r2=$\frac{2({m}^{2}+1)}{({m}^{2}+3)^{2}}$=$\frac{2}{{m}^{2}+1+\frac{4}{{m}^{2}+1}+4}$≤$\frac{2}{2\sqrt{4}+4}$=$\frac{1}{4}$,当且仅当m2=1,即m=±1时取等号.
∴直线l的方程为:y=$±(x-\sqrt{2})$.
∴直线l的倾斜角为:45°或135°.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、三角形面积的不同表示方法、三角形内切圆的面积、基本不等式的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.关于x的方程x+log2x=[x]([x]表示不大于x的最大整数)的解有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1,过E(x0,0)的直线l与椭圆C交于A,B两点,若$\frac{1}{|EA{|}^{2}}$+$\frac{1}{|EB{|}^{2}}$为定值m,则x0=$\sqrt{3}$;m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点到两个焦点的距离分别为3+2$\sqrt{2}$,3-2$\sqrt{2}$,如果直线x=t(t∈R)与椭圆相交于不同的两点A,B,C(-3,0),D(3,0),且直线CA与直线BD的交点是K,试求点K的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某人从银行贷款100万元,以后每年还款13.5万元,10年还清,问银行贷款的年利率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)满足:对任意x,y∈R都有f(x+y)=f(x)+f(y)-1,且f(1)=-2,则f(-1)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图是函数f(x)=Asin(2x+φ)(A>0,|φ|≤$\frac{π}{2}$)图象的一部分,对不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=$\sqrt{3}$,则φ的值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数1,m,9构成一个等比数列,则圆锥曲线$\frac{{x}^{2}}{m}$+y2=1的焦距为(  )
A.4B.2$\sqrt{2}$C.$\sqrt{2}$或2D.2$\sqrt{2}$或4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知变量x、y满足约束条件$\left\{\begin{array}{l}{|x|≤y}\\{x+2y-1≤0}\end{array}\right.$,则目标函数z=2x-y的最小值为(  )
A.-3B.$\frac{1}{3}$C.-2D.0

查看答案和解析>>

同步练习册答案