精英家教网 > 高中数学 > 题目详情
(2013•湛江二模)已知x轴上有一列点P1,P2 P3,…,Pn,…,当n≥2时,点Pn是把线段Pn-1 Pn+1 作n等分的分点中最靠近Pn+1的点,设线段P1P2,P2P3,P3P4,…,PnPn+1的长度分别 为a1,a2,a3,…,an,其中a1=1.
(1)求an关于n的解析式;
(2 )证明:a1+a2+a3+…+an<3
(3)设点P(n,an) {n≥3),在这些点中是否存在两个点同时在函数y=
k(x-1)2
(k>0)
 的图象上?如果存在,求出点的坐标;如果不存在,说明理由.
分析:(1)由于Pn是把Pn-1Pn+1线段作n等分的分点中最靠近Pn+1的点,所以知Pn-1Pn=(n-1)PnPn-1,从而可得
an
an-1
=
1
n-1
,进而利用叠乘即可求出a2,a3和an的表达式;
(2)对通项进行放缩,再求和,利用等比数列的求和公式即可证明;
(3)假设存在,即可得
(p-1)2
(p-1)!
=
(q-1)2
(q-1)!
,再设bn=
n2
n!
,考查数列{bn}单调减即可.
解答:(1)解:由已知Pn-1Pn=(n-1)PnPn-1
令n=2,P1P2=P2P3,∴a2=1,同理a3=
1
2
an
an-1
=
1
n-1

∴an=
1
n-1
an-1=
1
n-1
1
n-2
•an-2=…=
1
(n-1)!

(2)证明:∵n≥2时,
1
(n-1)!
=
1
1×2×…×n
1
2n-2

∴a1+a2+a3+…+an≤1+1+
1
2
+…
1
2n-2
=3-
1
2n-2
<3
而n=1时,结论成立,故a1+a2+a3+…+an<3;
(3)假设有两个点A(p,ap),B(q,aq),都在函数y=
k
(x-1)2
上,
即ap=
k
(p-1)2
,aq=
k
(q-1)2

所以
(p-1)2
(p-1)!
=k,
(q-1)2
(q-1)!
=k,消去k得
(p-1)2
(p-1)!
=
(q-1)2
(q-1)!
 ①,
设bn=
n2
n!
,考查数列{bn}的增减情况,
∵bn-bn-1=
n2
n!
-
(n-1)2
(n-1)!
=-
n2-3n+1
(n-1)!

∴当n>2时,n2-3n+1>0,所以对于数列{bn}为递减数列
∴不可能存在p,q使得①式成立,
∴不存在两个点同时在函数y=
k
(x-1)2
(k>0)
 的图象上.
点评:本题以线段为载体,考查数列的通项,考查放缩法的运用,考查函数的单调性,综合性强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湛江二模)如图,已知平面上直线l1∥l2,A、B分别是l1、l2上的动点,C是l1,l2之间一定点,C到l1的距离CM=1,C到l2的距离CN=
3
,△ABC内角A、B、C所对 边分别为a、b、c,a>b,且bcosB=acosA
(1)判断三角形△ABC的形状;
(2)记∠ACM=θ,f(θ)=
1
AC
+
1
BC
,求f(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江二模)(坐标系与参数方程选做题)
在直角坐标系xoy中,曲线C的参数方程是
x=2+2cosθ
y=2sinθ
(θ∈[0,2π],θ为参数),若以O为极点,x轴正半轴为极轴,则曲线C的极坐标方程是
ρ=4cosθ
ρ=4cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江二模)已知f(x)=
2x,x≤0
log3x,x>0
,则f(f(
1
3
))
=
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江二模)运行如图的程序框图,输出的结果是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江二模)已知函数f(x)=2
3
sinxcosx+cos2x

(1)求f(
π
6
)
的值;
(2)设x∈[0,
π
4
]
,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案