(本小题满分14分) 已知R,函数
(x∈R).
(1)当时,求函数f(x)的单调递增区间;
(2)函数f(x)是否能在R上单调递减,若能,求出的取值范围;若不能,请说明理由;
(3)若函数f(x)在上单调递增,求
的取值范围.
(1);(2)当
时, 函数f(x)在R上单调递减;(3)
【解析】本试题主要是考察了导数在研究函数中的运用。利用导数求解函数的单调性和研究函数的参数的范围问题。
(1)直接求解函数的导数,判定导数的正负,得到单调区间,
(2)如果在给定区间单调,则导数恒大于等于零或者恒小于等于零来得到参数的范围。
(3)同上,结合函数的单调区间,分离参数的思想得到a的范围。
解: (1) 当时,
,
.--------2分
令,即
,即
,
解得.
函数f(x)的单调递增区间是
.-------4分
(2) 若函数f(x)在R上单调递减,则对
R都成立,-------6分
即对
R都成立,
即
对
R都成立.
,解得
.
当
时, 函数f(x)在R上单调递减.---------9分
(3) 解法一:∵函数f(x)在[-1,1]上单调递增,
对
都成立,
对
都成立.
即对
都成立.---------11分
令,则
解得
.-----------14分
解法二: 函数f(x)在
上单调递增,
对
都成立,
对
都成立
对
都成立,即
对
都成立.----11分
令, 则
.------12分
当时,
;当
时,
.
在
上单调递减,在
上单调递增.
,
在
上的最大值是
.
.-----------14分
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列}是等比数列;
(2)设,求
及数列{
}的通项公式;
(3)记,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点
处的切线与直线
平行.
⑴ 求,
满足的关系式;
⑵ 若上恒成立,求
的取值范围;
⑶ 证明:(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com