数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总试卷大全
双曲线-=1的离心率为 .
解析
科目:高中数学 来源: 题型:填空题
已知双曲线中心在原点,一个焦点为,点P在双曲线上,且线段的中点坐标为(,),则此双曲线的离心率是 .
椭圆的左,右焦点分别为,焦距为,若直线与椭圆的一个交点满足,则该椭圆的离心率为 .
已知椭圆+=1的两个焦点是F1、F2,点P在该椭圆上,若|PF1|-|PF2|=2,则△PF1F2的面积是 .
已知F为双曲线C:-=1的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为 .
设P为直线y=x与双曲线-=1(a>0,b>0)左支的交点,F1是左焦点,PF1垂直于x轴,则双曲线的离心率e= .
已知双曲线-=1的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为 .
已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|= .
过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,直线与抛物线的准线的交点为B,点A在抛物线的准线上的射影为C,若=,·=36,则抛物线的方程为________.
百度致信 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区