精英家教网 > 高中数学 > 题目详情
(本题满分12分)
如图,在四棱锥中,底面为平行四边形,平面在棱上.

(I)当时,求证平面
(II)当二面角的大小为时,求直线与平面所成角的正弦值.
(I)见解析(II)

试题分析:(Ⅰ)在平行四边形中,

易知,                                                       ……2分
平面,所以平面,∴
在直角三角形中,易得
在直角三角形中,,又,∴
可得
.
,                                                       ……5分
又∵,∴平面.                              ……6分
(Ⅱ)由(Ⅰ)可知,,
可知为二面角的平面角,
,此时的中点.                                     ……8分
,连结,则平面平面,
,则平面,连结,
可得为直线与平面所成的角.
因为,,
所以.                                        ……10分
中,
直线与平面所成角的正弦值为.                         ……12分
解法二:依题意易知平面ACD.以A为坐标原点,AC、AD、SA分别为轴建立空间直角坐标系,则易得

(Ⅰ)由,                                ……3分
易得,从而平面.                            ……6分
(Ⅱ)由平面,二面角的平面角.
,则 的中点,
,                                                 ……8分
设平面的法向量为
,令,得,                 ……10分
从而
直线与平面所成角的正弦值为.                        ……12分
点评:解决空间立体几何问题可以用传统的方法证明也可以用向量方法来证明,用传统方法证明时,要把证明所用的定理的条件摆清楚,缺一不可,用向量方法时,运算量比较大.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,O、E分别是BD、BC的中点

(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的余弦值;
(III)求点E到平面ACD的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面,点的中点,中点.

(1)求证:平面⊥平面
(2)求直线与平面所成的角的正弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四边形均为菱形, ,且

(Ⅰ)求证:平面
(Ⅱ)求证:AE∥平面FCB;
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是直线,是两个不同的平面,下列选项正确的是(   )
A.若,则B.若,则
C.若,则D.若, ,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为两个不重合的平面,为两条不重合的直线,
现给出下列四个命题:
①若,则
②若,则
③若
④若.
其中,所有真命题的序号是        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正方体表面相交于则函数的图象大致是(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,下列几种说法正确的是   (    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列命题:
①若m∥β,n∥β,m、nα,则α∥β;
②若α⊥γ,β⊥γ,α∩β=m,nγ,则m⊥n;
③若m⊥α,α⊥β,m∥n,则n∥β;
④若n∥α,n∥β,α∩β=m,那么m∥n;
其中所有正确命题的个数是
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案