精英家教网 > 高中数学 > 题目详情
1.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为(  )
A.$\frac{7}{15}$B.$\frac{8}{15}$C.$\frac{3}{5}$D.$\frac{7}{10}$

分析 设“恰有一名女生当选”为事件A,“恰有两名女生当选”为事件B,显然A、B为互斥事件,利用互斥事件的概率公式即可求解

解答 解:设“恰有一名女生当选”为事件A,“恰有两名女生当选”为事件B,显然A、B为互斥事件.
从10名同学中任选2人共有10×9÷2=45种选法(即45个基本事件),
而事件A包括3×7个基本事件,事件B包括3×2÷2=3个基本事件,
故P=P(A)+P(B)=$\frac{21}{45}$+$\frac{3}{45}$=$\frac{24}{45}$=$\frac{8}{15}$
故选:B

点评 本题考查了古典概型与互斥事件相结合的问题,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的前n项和为Sn,且a1+a7=8,S1+S2=5.
(1)求数列{an}的通项公式;
(2)若$\sqrt{{b}_{n}}$是$\frac{1}{{a}_{n}}$与$\frac{1}{{a}_{n+1}}$的等比中项,Tn是数列{bn}的前n项和,求使得$\frac{{T}_{n}}{{T}_{k}}$≥$\frac{2k+1}{k}$•36-k恒成立的最小正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设直线与y轴相交于点P(0,2),且它的倾斜角的正弦值是$\frac{4}{5}$,求该直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex-e-x-2x.讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过平面外一点作与该平面垂直的直线有1条,垂直的平面有无数个,平行的直线无数条,平行的平面1个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x(x≥0)}\\{x+{x}^{2}(x<0)}\end{array}\right.$,对任意的x∈[0,1]恒有f(x-a)≤f(x)成立,则实数a=0、1或a≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若向量$\overrightarrow a=(3,1)$,$\overrightarrow b$=(m,m+1),且$\overrightarrow a$∥$\overrightarrow b$,则实数m的值为(  )
A.$-\frac{3}{2}$B.$-\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设AB,CD是过抛物线y2=8x-2焦点F的两条弦,AB、CD的倾角分别为α、2α,且|$\overrightarrow{AB}$|=2|$\overrightarrow{CD}$|,求|$\overrightarrow{AB}$|,|$\overrightarrow{CD}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲、乙两人各射击1次,击中目标的概率分别是$\frac{2}{3}$和$\frac{3}{4}$,假设两人射击目标是否击中相互之间没有影响,每人各次射击是否击中目标也没有影响.则两人各射击4次,甲恰好有2次击中目标且乙恰好有3次击中目标的概率为$\frac{1}{8}$.

查看答案和解析>>

同步练习册答案