精英家教网 > 高中数学 > 题目详情
已知向量(ω>0),函数的最小正周期为π.
(I)求函数f(x)的单调增区间;
(II)如果△ABC的三边a、b、c所对的角分别为A、B、C,且满足,求f(A)的值.
【答案】分析:(I)利用向量的数量积公式、二倍角公式及辅助角公式化简函数.利用f(x)的最小正周期为π,可求ω的值,从而可得函数的解析式,利用三角函数的单调性,即可得到函数f(x)的增区间;
(II)由,及,可求得,进而可求f(A)的值.
解答:解:(I)=
=…(3分)
∵f(x)的最小正周期为π,且ω>0.
,解得ω=1,…(4分)

…(5分)
得f(x)的增区间为…(6分)
(II)由,∴
又由=…(8分)
∴在△ABC中,…(9分)
=…(12分)
点评:本题考查三角函数式的化简,考查数量积公式的运用,考查余弦定理的运用,解题的关键是三角函数式的化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
OB
=(2,0),
OC
=(2,2),
CA
=(
2
cosθ,
2
sinθ)
α为
OA
OB
的夹角,则α的取值范围是
[
π
12
12
]
[
π
12
12
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,0),
b
=(x,1)
,当x>0时,定义函数f(x)=
a
b
|
a
|+|
b
|

(1)求函数y=f(x)的反函数y=f-1(x);
(2)数列{an}满足:a1=a>0,an+1=f(an),n∈N*,Sn为数列{an}的前n项和,
①证明:Sn<2a;
②当a=1时,证明:an
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,0),
b
=(x,1)
,当x>0时,定义函数f(x)=
a
b
|
a
|+|
b
|

(1)求函数y=f(x)的反函数y=f-1(x);
(2)数列{an}满足:a1=a>0,an+1=f(an),n∈N*,Sn为数列{an}的前n项和,则:
①当a=1时,证明:an
1
2n

②对任意θ∈[0,2π],当2asinθ-2a+Sn≠0时,
证明:
2asinθ+2a-Sn
2asinθ-2a+Sn
4a-Sn
Sn
2asinθ+2a-Sn
2asinθ-2a+Sn
Sn
4a-Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(2, 0),  
OC
=
AB
=(0,  1)
,动点M(x,y)到直线y=1的距离等于d,并且满足
OM
 • 
AM
=k(
CM
 • 
BM
-d2)
(其中O是坐标原点,k∈R).
(1)求动点M的轨迹方程,并说明轨迹是什么曲线;
(2)当k=
1
2
时,求|
OM
+2
AM
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题,其中正确的是(  )
①已知向量
α
β
,则“
α
β
=0
”的充要条件是“
α
=
0
β
=
0
”;
②已知数列{an}和{bn},则“
lim
n→∞
anbn=0
”的充要条件是“
lim
n→∞
an=0
lim
n→∞
bn=0
”;
③已知z1,z2∈C,则“z1•z2=0”的充要条件是“z1=0或z2=0”;
④已知α,β∈R,则“sinα•cosβ=0”的充要条件是“α=kπ,(k∈Z)或β=
π
2
+kπ,(k∈Z)

查看答案和解析>>

同步练习册答案