精英家教网 > 高中数学 > 题目详情
14.数列{an}中,a1=1,a2=3,an+2是anan+1的个位数字,Sn是{an}的前n项和,则S2015=(  )
A.8733B.8710C.8726D.8717

分析 通过前2项及an+2是anan+1的个位数字写出前几项的值,可知该数列的周期为6,进而可得结论.

解答 解:∵a1=1,a2=3,
∴a1a2=1•3=3,
又∵an+2是anan+1的个位数字,
∴a3=3,
∵a2a3=3•3=9,∴a4=9,
∵a3a4=3•9=27,∴a5=7,
∵a4a5=9•7=63,∴a6=3,
∵a5a6=7•3=21,∴a7=1,
∴该数列是以6为周期的周期数列,
且前6项和为1+3+3+9+7+3=26,
∵2015=336•6-1,
∴S2015=336•26-3=8736-3=8733,
故选:A.

点评 本题考查数列的通项,找出周期是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数y=tanx在区间($\frac{π}{2}$,m)上是增函数,则实数m的取值范围是( $\frac{π}{2}$,$\frac{3π}{2}$ ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个电路如图所示,C、D、E、F为4个开关,其闭合的概率都是$\frac{1}{2}$,且是相互独立的,则灯亮的概率是(  )
A.$\frac{9}{16}$B.$\frac{7}{16}$C.$\frac{13}{16}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.则f(1)+f(2)+…+f(2015)=(  )
A.333B.336C.1678D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图程序框图运行之后输出的W值为(  )
A.11B.22C.39D.41

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某少数民族的刺绣有着悠久的历史,图中(1)、(2)、(3)、(4)为她们刺锈最简单的四个图案,这些图案都是由小正方向构成,小正方形数越多刺锈越漂亮,向按同样的规律刺锈(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形

(1)求f(6)的值
(2)求出f(n)的表达式
(3)求证:1≤$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.从编号为0,1,2…,49的50件产品中,采用系统抽样的方法抽取容量是5分样本,若编号为27的产品在样本中,则该样本中产品的最大编号为47.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若曲线y=ax-lnx在(1,a)处的切线平行于x轴,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.统计局就某地居民的月收入情况调查了10000人,并根据所得数据画了样本频率分布直方图,每个分组包括左端点,不包含右端点,如第一组表示收入在[500,1000).
(1)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,则月收入在[1500,2500)的应抽取多少人?
(2)根据频率分布直方图估计样本数据的平均数.

查看答案和解析>>

同步练习册答案