精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=1,a2n=n-an,a2n+1=an+1,则a100=(  )
A、30B、31C、32D、33
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:根据数列的递推关系两式相加得a2n+a2n+1=n+1,然后根据数列的递推关系进行转化求解即可.
解答: 解:∵a1=1,a2n=n-an,a2n+1=an+1,
则a100=50-a50=50-(25-a25)=25+a12+1
=26+(6-a6)=32-(3-a3
=29+(a1+1)
=29+2=31,
故选:B
点评:本题主要考查数列项的求解,根据数列的递推关系依次进行转化是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若方程ax2-x-1=0在区间(0,1)内恰有一个解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向量
a
b
中,|
a
|≠0,
b
=t
a
(t∈R).对于使命题“?t>1,|
c
-
b
|≥|
c
-
a
|”为真的非零向量
c
,给出下列命题:
①?t>1,(
c
-
a
)•( 
b
-
a
)≤0;    ②?t>1,( 
c
-
a
)•(
b
-
a
)>0;
③?t∈R,(
c
-
a
)•( 
c
-
b
)<0;   ④?t∈R,(
c
-
a
)•(
c
-
b
)<0.
则以上四个命题中的真命题是(  )
A、①④B、②③
C、①②④D、①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,将直线y=
x
2
与直线x=1及x轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V圆锥=
1
0
π(
x
2
2dx=
π
12
x3|
0
1
=
π
12

据此类推:将曲线y=x2与直线y=4所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn和通项an满足2Sn+an=1,数列{bn}中,b1=1,b2=
1
2
2
bn+1
-
1
bn
-
1
bn+2
=0(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)数列{cn}满足cn=
an
bn
,且Tn=c1+c2+c3+…+cn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x),对任意x,y∈R,有f(x-y)+f(x+y)=2f(x)f(y),且f(0)≠0.
求证:f(x)是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

从3名语文老师、4名数学老师和5名英语老师中选派5人组成一个支教小组,则语文、数学和英语老师都至少有1人的选派方法种数是(  )
A、590B、570
C、360D、210

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:ρsin(θ-
π
4
)=4和圆C:ρ=2k•cos(θ+
π
4
)(k≠0),若直线l上的点到圆C上的点的最小距离等于2.
(1)求圆心C的直角坐标;
(2)求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是(  )
A、?x∈R,都有x2-3x+3>0成立
B、?x0∈R,使sin2x0+cos2x0<1成立
C、“?x0∈R,使x02-1<0”的否定是“?x∈R,都有x2-1>0”
D、若“p∨q”为假,则命题p、q中一个真另一个假

查看答案和解析>>

同步练习册答案