精英家教网 > 高中数学 > 题目详情
如图,在正方形ABCD-
A
 
1
B1C1D1
中,E,F分别是棱AB,BC中点.
(1)求证:EF∥平面
A
 
1
C1D

(2)求证:EF⊥平面BB1D.
分析:(1)利用三角形中位线的性质,证明线线平行,从而可得线面平行;
(2)利用线面垂直的判定,可得结论.
解答:证明:(1)∵E,F分别是棱AB,BC中点,
∴EF∥AC
∵AC∥A1C1
∴EF∥A1C1
∵A1C1?平面
A
 
1
C1D
,EF?平面
A
 
1
C1D

∴EF∥平面
A
 
1
C1D

(2)∵EF∥AC,AC⊥BD
∴EF⊥BD,
∵BB1⊥平面ABCD,EF?平面ABCD
∴EF⊥BB1
∵BD∩BB1=B
∴EF⊥平面BB1D.
点评:本题考查线面平行,考查线面垂直,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求证:AB1∥平面 A1C1C;
(Ⅱ)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•郑州二模)如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求证:A1B1⊥平面AA1C; 
(II)求证:AB1∥平面 A1C1C;
(II)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省烟台市莱州一中高三第二次质量检测数学试卷(文科)(解析版) 题型:解答题

如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

科目:高中数学 来源:2012年山东省青岛市高考数学二模试卷(文科)(解析版) 题型:解答题

如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

同步练习册答案