【题目】已知函数.
(1)讨论的单调性;
(2)若,记的极小值为,证明:.
【答案】(1)当时,单调递增;当时,递增区间为,递减区间;当时,递增区间,递减区间; (2)证明见解析.
【解析】
(1)求得函数的导数,分类讨论,即可求解函数的单调区间;
(2)由(1)可知,取得,把,转化为,
设,利用导数求得函数的单调性与最值,即可求解.
(1)由题意,函数,
则,
①当时,,此时函数单调递增;
②当时,令,即,解得或,
令,即,解得,
所以函数在单调递增,在上单调递减;
③当时,令,即,解得或,
令,即,解得,
所以函数在单调递增,在上单调递减,
综上可得:
当时,函数单调递增;当时,函数递增区间为,递减区间;当时,函数递增区间,递减区间.
(2)由(1)可知,当时,在单调递增,在上单调递减,所以当时,函数取得极小值,
极小值为,
要证:,只需证:,只需证:,
即,
设,则,
令,即,解得或,
令,即,解得,
所以函数在区间上单调递减,在区间上单调递增,
所以当时,取得最大值,最大值为,
即当时,,即,
所以.
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,原点为,椭圆的动弦过焦点且不垂直于坐标轴,弦的中点为,过且垂直于线段的直线交射线于点.
(1)证明:点在定直线上;
(2)当最大时,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴非负半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程为(为参数).
(1)若直线平行于直线,且与曲线只有一个公共点,求直线的方程;
(2)若直线与曲线交于两点,,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同;曲线 的方程是,直线的参数方程为(为参数,),设, 直线与曲线交于 两点.
(1)当时,求的长度;
(2)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中常数.
(1)当时,求函数的单调区间.
(2)设定义在上的函数在点处的切线方程为.当时,若在内恒成立,则称为函数的“类对称点”.当时,是否存在“类对称点”?若存在,请求出一个“类对称点”的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某种气垫船的最大航速是海里小时,船每小时使用的燃料费用和船速的平方成正比.若船速为海里小时,则船每小时的燃料费用为元,其余费用(不论船速为多少)都是每小时元。甲乙两地相距海里,船从甲地匀速航行到乙地.
(1)试把船从甲地到乙地所需的总费用,表示为船速(海里小时)的函数,并指出函数的定义域;
(2)当船速为每小时多少海里时,船从甲地到乙地所需的总费用最少?最少费用为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点、为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为、,求的值;
(3)过圆上任意一点作圆的切线交双曲线于、两点,中点为,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,为了测量A、B处岛屿的距离,小海在D处观测,A、B分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶20海里至C处,观测B在C处的正北方向,A在C处的北偏西45°方向,则A、B两岛屿的距高为___________海里.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com