精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面为菱形,其中的中点.

(1) 求证:
(2) 若平面平面,且的中点,求四棱锥的体积.
(1)详见解析; (2)

试题分析:(1)只要证与平面内的两条直线相交垂直即可,如都垂直; (2)先作求出四棱锥的高,再利用四棱锥体积公式求四棱锥的体积.
试题解析:(1)为中点,               1分
,在中,
为等边三角形,的中点,
,                               2分
,平面,平面 ,
(三个条件少写一个不得该步骤分)                 3分
平面.                        4分
(2)连接,作.               5分

,平面,
平面平面ABCD,
平面平面ABCD,      6分
 ,       7分
 ,
               8分
.          9分
,      10分
,.           11分
在菱形中,,
方法一:,      12分
.                                13分
.            14分
方法二:
,                   12分
,          13分

            
                               14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形均为全等的直角梯形,且.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥中,底面的中点,点上,且.

(Ⅰ)求证:平面平面
(Ⅱ)求平面与平面所成的二面角的平面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知αβγ是三个不重合的平面,ab是两条不重合的直线,有下列三个条件:①aγb?β;②aγbβ;③bβa?γ.如果命题“αβab?γ,且________,那么ab”为真命题,则可以在横线处填入的条件是(  ).
A.①或②B.②或③C.①或③D.只有②

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中,真命题是(  )
A.直线m、n都平行于平面,则m∥n
B.设是真二面角,若直线,则
C.设m、n是异面直线,若m∥平面,则n与相交
D.若直线m、n在平面内的射影依次是一个点和一条直线,且,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对两条不相交的空间直线a与b, 必存在平面a, 使得(      )
A. aÌa, bÌaB.aÌa, b//aC. a^a, b^aD.aÌa, b^a

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,正方体的棱长为1, 分别是棱的中点,过直线的平面分别与棱交于,设,给出以下四个命题:

①平面平面
②当且仅当时,四边形的面积最小;
③四边形周长是单调函数;
④四棱锥的体积为常函数;
以上命题中真命题的序号为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题“直线与平面有公共点”是真命题,那么下列命题:
①直线上的点都在平面内;
②直线上有些点不在平面内;
③平面内任意一条直线都不与直线平行.
其中真命题的个数是( )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥S-ABC,G1,G2分别为△SAB,△SAC的重心,则G1G2与△SBC,△ABC所在平面的位置关系是   (     )
A.垂直和平行B.均为平行C.均为垂直D.不确定

查看答案和解析>>

同步练习册答案