精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设交于两点,中点为的垂直平分线交.为坐标原点,极轴为轴的正半轴建立直角坐标系.

1)求的直角坐标方程与点的直角坐标;

2)求证:.

【答案】1;(2)见解析.

【解析】

1)将曲线的极坐标方程变形为,再由可将曲线的极坐标方程化为直角坐标方程,将直线的方程与曲线的方程联立,求出点的坐标,即可得出线段的中点的坐标;

2)求得,写出直线的参数方程,将直线的参数方程与曲线的普通方程联立,利用韦达定理求得的值,进而可得出结论.

1)曲线的极坐标方程可化为,即

代入曲线的方程得

所以,曲线的直角坐标方程为.

将直线的极坐标方程化为普通方程得

联立,得,则点

因此,线段的中点为

2)由(1)得

易知的垂直平分线的参数方程为为参数),

代入的普通方程得

因此,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,点在线段上,且,过点作球的截面,则所得截面圆面积的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有( )

A.900种B.600种C.300种D.150种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为

(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;

(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调查.经统计这100位居民的网购消费金额均在区间内,按分成6组,其频率分布直方图如图所示.

1)估计该社区居民最近一年来网购消费金额的中位数;

2)将网购消费金额在20千元以上者称为网购迷,补全下面的列联表,并判断有多大把握认为网购迷与性别有关系

总计

网购迷

20

非网购迷

45

总计

100

附:

临界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的十八大将生态文明建设纳入中国特色社会主义事业“五位一体”总体布局,“美丽中国”成为中华民族追求的新目标.十九大报告中多次出现的“绿色”“低碳”“节约”等词语,正在走入百姓生活,城市出行的新变革正在悄然发生,绿色出行的理念已深入人心,建设美丽中国,绿色出行至关重要,骑自行车或步行渐渐成为市民的一种出行习惯.某市环保机构随机抽查统计了该市部分成年市民某月骑车次数,统计如下:

次数

年龄

18岁至31岁

8

12

20

60

140

150

32岁至44岁

12

28

20

140

60

150

45岁至59岁

25

50

80

100

225

450

60岁及以上

25

10

10

19

4

2

联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老人.

(1)若从被抽查的该月骑车次数在的老年人中随机选出两名幸运者给予奖励,求其中一名幸运者该月骑车次数在之间,另一名幸运者该月骑车次数在之间的概率;

(2)用样本估计总体的思想,解决如下问题:

①估计该市在32岁至44岁年龄段的一个青年人每月骑车的平均次数;

②若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,统计并完成下表,说明能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?

青年人

非青年人

合计

骑行爱好者

非骑行爱好者

合计

0.10

0.05

0.025

0.10

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

参数数据:

(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

(1)当时,求函数的最大值;

(2)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题正确的是(

①线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;

②残差平方和越小的模型,拟合的效果越好;

③用相关指数来刻画回归效果,越小,说明模型的拟合的效果越好;

④随机误差是衡量预报精确度的一个量,它满足.

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018115日上午,首届中国国际进口博览会拉开大幕,这是中国也是世界上首次以进口为主题的国家级博览会,本次博览会包括企业产品展、国家贸易投资展,其中企业产品展分为7个展区,每个展区统计了备受关注百分比,如下表:

展区类型

智能及高端装备

消费电子及家电

汽车

服装服饰及日用消费品

食品及农产品

医疗器械及医药保健

服务贸易

展区的企业数

400

60

70

650

1670

300

450

备受关注百分比

备受关注百分比指:一个展区中受到所有相关人士关注简称备受关注的企业数与该展区的企业数的比值.

(1)从企业产品展7个展区的企业中随机选取1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;

(2)某电视台采用分层抽样的方法,在“消费电子及家电”展区备受关注的企业和“医疗器械及医药保健”展区备受关注的企业中抽取6家进行了采访,若从受访企业中随机抽取2家进行产品展示,求恰有1家来自于“医疗器械及医药保健”展区的概率.

查看答案和解析>>

同步练习册答案